论文标题

海森堡极限制度中的多参数量子计量学:许多重复方案与完整优化

Multiparameter quantum metrology in the Heisenberg Limit regime: many repetition scenario vs. full optimization

论文作者

Górecki, Wojciech, Demkowicz-Dobrzański, Rafał

论文摘要

我们讨论了两个不同范式内多参数计量学的海森堡限制 - 一个重复测量多次的测量值(因此,Cramér-rao界限保证是渐近饱和的),第二个重复测量范围),第二个资源分配给了一个实验实现(对Mimimimax方法进行分配)。我们研究了同时测量所有参数的潜在优势,而不是单独估算它们,同时花费相同的总资源。我们表明,通常存在这种优势的存在,其发生的大小和条件取决于选择了两个范式中的哪个。特别是,对于使用$ n $纠缠旋转的磁场感测问题 - $ 1/2 $,我们表明纯粹基于Cramér-rao形式主义的预测可能在此问题上过于悲观 - MiniMax方法表明,共同测量所有参数的优越性,而Cramér-rao的方法表明cramér-rao的方法表明缺乏这样的优势。

We discuss the Heisenberg limit in the multiparameter metrology within two different paradigms -- the one, where the measurement is repeated many times (so the Cramér-Rao bound is guaranteed to be asymptotically saturable) and the second one, where all the resources are allocated into one experimental realization (analyzed with the mimimax approach). We investigate the potential advantage of measuring all the parameter simultaneously compared to estimating them individually, while spending the same total amount of resources. We show that in general the existence of such an advantage, its magnitude and conditions under which it occurs depends on which of the two paradigms has been chosen. In particular, for the problem of magnetic field sensing using $N$ entangled spin-$1/2$, we show that the predictions based purely on the Cramér-Rao formalism may be overly pessimistic in this matter -- the minimax approach reveals the superiority of measuring all the parameters jointly whereas the Cramér-Rao approach indicates lack of such an advantage.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源