论文标题
耦合旋转链中的量子正弦式动力学
Quantum sine-Gordon dynamics in coupled spin chains
论文作者
论文摘要
正弦 - 戈登场理论在大量量子多体系统中成为低能的描述。最近的努力是通过干扰两个弱耦合的一维冷原子气体来实现模型的量子模拟器的。原子云中的弱相互作用在半经典制度中提供了正弦的实现。此外,复杂的微观动力学可防止对有效正弦戈登有效性领域的定量理解。在这项工作中,我们专注于旋转梯子实现,并观察到量子状态深处的新兴正弦 - 戈登动力学。我们使用矩阵 - 产品状态技术来数字表征系统的低能领域,并将其与确切的场理论预测进行比较。从此比较,我们获得了正弦 - 戈登描述有效性的定量边界。我们通过探测其丰富的频谱并观察散射事件中可整合动力学的签名来为新兴场理论提供涵盖的证据。
The sine-Gordon field theory emerges as the low-energy description in a wealth of quantum many-body systems. Recent efforts have been directed towards realizing quantum simulators of the model, by interfering two weakly coupled one-dimensional cold atomic gases. The weak interactions within the atomic clouds provide a sine-Gordon realization in the semiclassical regime. Furthermore, the complex microscopic dynamics prevents a quantitative understanding of the effective sine-Gordon validity realm. In this work, we focus on a spin ladder realization and observe the emergent sine-Gordon dynamics deep in the quantum regime. We use matrix-product state techniques to numerically characterize the low-energy sector of the system and compare it with the exact field theory predictions. From this comparison, we obtain quantitative boundaries for the validity of the sine-Gordon description. We provide encompassing evidence for the emergent field theory by probing its rich spectrum and by observing the signatures of integrable dynamics in scattering events.