论文标题
迭代硬阈值的稳定性和风险范围
Stability and Risk Bounds of Iterative Hard Thresholding
论文作者
论文摘要
在本文中,我们分析了广泛用于稀疏恢复问题的迭代硬阈值(IHT)算法的概括性能。 IHT的参数估计和稀疏恢复一致性长期以来在压缩传感中已知。从统计学习的角度来看,另一个基本问题是IHT估计对看不见的数据的预测能力如何。本文通过在算法稳定性的概念下为IHT引入一种新颖的稀疏概括理论来回答这个公开问题。我们的理论表明:1)在自然条件下,在$ n $ dimension $ p $的经验风险功能上,具有稀疏级别$ k $的iht享受$ \ mathcal {\ tilde o}(n^{ - 1/2} \ sqrt {k \ log log log(n)\ log(n)\ log(n)\ log log(p)) 2)更紧密的$ \ Mathcal {\ tilde o}(n^{ - 1/2} \ sqrt {\ log(n)})$可以通过在援引人群风险的假设IHT程序上施加额外的迭代稳定性条件来确定绑定的额外的额外迭代稳定性条件; 3)订单$ \ MATHCAL {\ tilde o} \ left(n^{ - 1} k(\ log^3(n)+\ log(p))\ right(p))$的快速速率可以得出强烈凸风险函数在适当的强质信号条件下。结果已被实质性地实现,以稀疏的线性回归和稀疏的逻辑回归模型,以证明我们理论的适用性。提供初步数值证据以确认我们的理论预测。
In this paper, we analyze the generalization performance of the Iterative Hard Thresholding (IHT) algorithm widely used for sparse recovery problems. The parameter estimation and sparsity recovery consistency of IHT has long been known in compressed sensing. From the perspective of statistical learning, another fundamental question is how well the IHT estimation would predict on unseen data. This paper makes progress towards answering this open question by introducing a novel sparse generalization theory for IHT under the notion of algorithmic stability. Our theory reveals that: 1) under natural conditions on the empirical risk function over $n$ samples of dimension $p$, IHT with sparsity level $k$ enjoys an $\mathcal{\tilde O}(n^{-1/2}\sqrt{k\log(n)\log(p)})$ rate of convergence in sparse excess risk; 2) a tighter $\mathcal{\tilde O}(n^{-1/2}\sqrt{\log(n)})$ bound can be established by imposing an additional iteration stability condition on a hypothetical IHT procedure invoked to the population risk; and 3) a fast rate of order $\mathcal{\tilde O}\left(n^{-1}k(\log^3(n)+\log(p))\right)$ can be derived for strongly convex risk function under proper strong-signal conditions. The results have been substantialized to sparse linear regression and sparse logistic regression models to demonstrate the applicability of our theory. Preliminary numerical evidence is provided to confirm our theoretical predictions.