论文标题

以太坊相互作用图上的行为意识账户匿名化

Behavior-aware Account De-anonymization on Ethereum Interaction Graph

论文作者

Zhou, Jiajun, Hu, Chenkai, Chi, Jianlei, Wu, Jiajing, Shen, Meng, Xuan, Qi

论文摘要

区块链技术具有权力下放,可追溯性和防篡改的特征,从而创造了可靠的分散信任机制,进一步加速了区块链金融的发展。但是,区块链的匿名化阻碍了市场法规,从而增加了非法活动,例如在区块链金融平台上洗钱,赌博和网络钓鱼欺诈。因此,金融安全已成为区块链生态系统中的重中之重,呼吁进行有效的市场监管。在本文中,我们考虑从图形分类的角度识别以太坊帐户,并提出一个名为Ethident的端到端图形神经网络框架,以表征帐户的行为模式并进一步实现帐户的匿名化。具体而言,我们首先使用原始以太坊数据构建帐户交互图(AIG)。然后,我们将名为Hgate的分层图表编码器设计为我们框架的骨干,该框架可以有效地表征节点级帐户特征和子图级行为模式。为了减轻帐户标签稀缺性,我们进一步引入了对比的自我划分机制,作为正规化以共同训练我们的框架。以太坊数据集的全面实验表明,我们的框架在帐户识别方面取得了出色的绩效,比以前的最新面临的相对相对相对提高了1.13%〜4.93%。此外,详细的分析说明了Ethident在识别和理解以太坊中已知参与者的行为(例如,交易所,矿工等)以及违法者(例如网络钓鱼骗子,黑客等)的行为,这可能有助于风险评估和市场调节。

Blockchain technology has the characteristics of decentralization, traceability and tamper-proof, which creates a reliable decentralized trust mechanism, further accelerating the development of blockchain finance. However, the anonymization of blockchain hinders market regulation, resulting in increasing illegal activities such as money laundering, gambling and phishing fraud on blockchain financial platforms. Thus, financial security has become a top priority in the blockchain ecosystem, calling for effective market regulation. In this paper, we consider identifying Ethereum accounts from a graph classification perspective, and propose an end-to-end graph neural network framework named Ethident, to characterize the behavior patterns of accounts and further achieve account de-anonymization. Specifically, we first construct an Account Interaction Graph (AIG) using raw Ethereum data. Then we design a hierarchical graph attention encoder named HGATE as the backbone of our framework, which can effectively characterize the node-level account features and subgraph-level behavior patterns. For alleviating account label scarcity, we further introduce contrastive self-supervision mechanism as regularization to jointly train our framework. Comprehensive experiments on Ethereum datasets demonstrate that our framework achieves superior performance in account identification, yielding 1.13% ~ 4.93% relative improvement over previous state-of-the-art. Furthermore, detailed analyses illustrate the effectiveness of Ethident in identifying and understanding the behavior of known participants in Ethereum (e.g. exchanges, miners, etc.), as well as that of the lawbreakers (e.g. phishing scammers, hackers, etc.), which may aid in risk assessment and market regulation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源