论文标题

带有栅极传感器的多个供体电子旋转的单发读数

Single-shot readout of multiple donor electron spins with a gate-based sensor

论文作者

Hogg, Mark R., Pakkiam, Prasanna, Gorman, Samuel K., Timofeev, Andrey V., Chung, Yousun, Gulati, Gurpreet K., House, Matthew G., Simmons, Michelle Y.

论文摘要

大规模半导体旋转量子计算机的建议需要高保真单次量子量读数,以执行误差校正,并在计算结束时读取Qubit寄存器。但是,随着设备扩展到较大的量子数,将读数传感器集成到密集的量子芯片中是一个至关重要的挑战。两种有希望的方法是最大程度地减少传感器的足迹,并扩展每个传感器的范围以读取更多量子位。在这里,我们使用纳米级单量量子点(SLQD)传感器显示高保真的单发电子自旋读数,该传感器既紧凑又能够读取多个量子。我们的基于栅极的SLQD传感器部署在全部外皮硅供体旋转量子设备中,我们演示了三个$^{31} $ p供体量子点电子旋转的单次读数,最大保真度为95%。重要的是,在我们的设备中,量子点限制电位是由供体固有地提供的,从而消除了对其他金属限制门的需要,并导致传感器和供体量子点之间的强大电容相互作用。我们观察到$ 1/d^{1.4} $缩放传感器和$^{31} $ p点之间的电容耦合(其中$ d $是传感器 - 点距离),而GATE固定的量子点Dot Decesites中的$ 1/d^{2.5-3.0} $。由于量子尺寸较小,并且在全部外部供体设备中具有强大的电容相互作用,因此我们估计单个传感器可以在线性阵列中获得大约15吨的单发读数,而在栅极定义的量子点设备中,相似的传感器的3-4码头可以实现。我们的结果突出了具有显着降低传感器密度的自旋量子设备的潜力。

Proposals for large-scale semiconductor spin-based quantum computers require high-fidelity single-shot qubit readout to perform error correction and read out qubit registers at the end of a computation. However, as devices scale to larger qubit numbers integrating readout sensors into densely packed qubit chips is a critical challenge. Two promising approaches are minimising the footprint of the sensors, and extending the range of each sensor to read more qubits. Here we show high-fidelity single-shot electron spin readout using a nanoscale single-lead quantum dot (SLQD) sensor that is both compact and capable of reading multiple qubits. Our gate-based SLQD sensor is deployed in an all-epitaxial silicon donor spin qubit device, and we demonstrate single-shot readout of three $^{31}$P donor quantum dot electron spins with a maximum fidelity of 95%. Importantly in our device the quantum dot confinement potentials are provided inherently by the donors, removing the need for additional metallic confinement gates and resulting in strong capacitive interactions between sensor and donor quantum dots. We observe a $1/d^{1.4}$ scaling of the capacitive coupling between sensor and $^{31}$P dots (where $d$ is the sensor-dot distance), compared to $1/d^{2.5-3.0}$ in gate-defined quantum dot devices. Due to the small qubit size and strong capacitive interactions in all-epitaxial donor devices, we estimate a single sensor can achieve single-shot readout of approximately 15 qubits in a linear array, compared to 3-4 qubits for a similar sensor in a gate-defined quantum dot device. Our results highlight the potential for spin qubit devices with significantly reduced sensor densities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源