论文标题

分区,多个Zeta值和Q-Bracket

Partitions, Multiple Zeta Values and the q-bracket

论文作者

Bachmann, Henrik, van Ittersum, Jan-Willem

论文摘要

我们提供了一个框架,用于将分区的总和定义的某些Q序列与多个Zeta值定义。特别是,我们在分区上引入了多项式函数的空间,该分区是相关的Q系列是多个Zeta值的Q-Analogues。通过明确描述(正则)多个Zeta值,一个人以$ q \至1 $的形式获得了该区域已知的先前结果。将其与以下事实一起,即在分区上的其他函数家族(例如移动的对称函数)是我们空间中的元素,然后将在多个Zeta值的(Q-Analogues)之间产生关系。相反,我们将表明,可以将多个Zeta值之间的关系“抬高”到分区的函数世界,该函数提供了相关Q串行的函数的新示例。

We provide a framework for relating certain q-series defined by sums over partitions to multiple zeta values. In particular, we introduce a space of polynomial functions on partitions for which the associated q-series are q-analogues of multiple zeta values. By explicitly describing the (regularized) multiple zeta values one obtains as $q\to 1$, we extend previous results known in this area. Using this together with the fact that other families of functions on partitions, such as shifted symmetric functions, are elements in our space will then give relations among (q-analogues of) multiple zeta values. Conversely, we will show that relations among multiple zeta values can be `lifted' to the world of functions on partitions, which provides new examples of functions where the associated q-series are quasimodular.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源