论文标题
宇宙中凸起和磁盘的出现
The Emergence of Bulges and Disks in the Universe
论文作者
论文摘要
本论文利用了来自高级相机的成像数据进行宇宙进化调查(COSMOS)和深层外层次可见遗产调查(Devils)领域的哈勃太空望远镜(HST)的调查(ACS)。我们提供44,000个星系的视觉形态分类,以$ z = 1 $,高于$ 10^{9.5} m_ \ odot $(D10/acs样本)的恒星质量高于恒星质量。我们对D10/ACS样品进行了强大的贝叶斯凸出螺旋分解分析。这项研究构成了迄今为止该领域中最大的形态学分类之一,结构分析是目录。使用这些目录,我们探索了星系星系的恒星质量函数(SMF)和恒星质量密度(SMD)的演变,以及恒星质量大小的关系($ M _*-R_E $)作为形态类型的函数,以及对于磁盘和磁盘的函数。我们量化了宇宙当前恒星质量的三分之一是在最后8个GYR中形成的。我们发现,SMF的高质量端的适度增长主要由椭圆体系的增长主导,并且宇宙的绝大部分恒星质量在所有时期都锁定在磁盘+凸起系统中,并且它们会随着时间的推移增加对总SMD的贡献。由于$ z = 1 $,因此纯氧化形态的贡献会随着时间的推移而逐渐减少($ \ sim40 \%$),而椭圆形将其贡献增加了$ 1.7 $。通过将星系分解为磁盘和凸起,我们量化了所有时期的平均$ \ sim50 \%$ $ \%$ $ $ \%$,是磁盘结构的,自$ z \ sim 0.6 $以来,这种贡献相对不变。随之而来的是伪造和球体(凸起和椭圆形)质量的快速生长。此外,尽管宇宙恒星形成史正在逐渐下降,但宇宙正在从磁盘统治时代过渡到...
This thesis makes use of the imaging data from the Advanced Camera for Surveys (ACS) of the Hubble Space Telescope (HST) in the Cosmic Evolution Survey (COSMOS) and the Deep Extragalactic VIsible Legacy Survey (DEVILS) field. We provide visual morphological classifications of 44,000 galaxies out to redshift $z = 1$ and above a stellar mass of $10^{9.5} M_\odot$ (D10/ACS sample). We perform a robust Bayesian bulge-disk decomposition analysis of the D10/ACS sample. This study forms one of the largest morphological classification and structural analyses catalogues in this field to date. Using these catalogues, we explore the evolution of the stellar mass function (SMF) and the stellar mass density (SMD) together with the stellar mass-size relations ($M_*-R_e$) of galaxies as a function of morphological type as well as for disks and bulges, separately. We quantify that one-third of the current stellar mass of the Universe was formed during the last 8 Gyr. We find that the moderate growth of the high-mass end of the SMF is dominated by the growth of elliptical systems and that the vast majority of the stellar mass of the Universe is locked up in disk+bulge systems at all epochs and that they increase their contribution to the total SMD with time. The contribution of the pure-disk morphology gradually decreases with time ($\sim40\%$), while ellipticals increase their contribution by a factor of $1.7$ since $z = 1$. By decomposing galaxies into disks and bulges we quantify that on average $\sim50\%$ of the total stellar mass of the Universe at all epochs is in disk structures with this contribution relatively unchanged since $z \sim 0.6$. With this comes more rapid growth of pseudo-bulges and spheroids (bulges and ellipticals) in mass. Furthermore, while the cosmic star-formation history is declining the Universe is transitioning from a disk dominated era to ...