论文标题

关于Zeitlin 2D Euler方程的不变度量和解决方案的无限尺寸限制

On the infinite dimension limit of invariant measures and solutions of Zeitlin's 2D Euler equations

论文作者

Flandoli, Franco, Pappalettera, Umberto, Viviani, Milo

论文摘要

在这项工作中,我们考虑了Zeitlin V. Zeitlin提出的球体上2D Euler方程的有限维近似,并将其融合向解决方案的解决方案,其边缘分布为endrophy量。该方法依赖于$ \ mathbb {s}^2 $的结构常数的非平凡计算,这似乎是新的。在最后一部分中,我们讨论了将结果扩展到与较高Casimirs相关的Gibbsian措施的问题。

In this work we consider a finite dimensional approximation for the 2D Euler equations on the sphere, proposed by V. Zeitlin, and show their convergence towards a solution to Euler equations with marginals distributed as the enstrophy measure. The method relies on nontrivial computations on the structure constants of $\mathbb{S}^2$, that appear to be new. In the last section we discuss the problem of extending our results to Gibbsian measures associated with higher Casimirs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源