论文标题

基于Koopman的可区分预测控制,用于动态感知的经济调度问题

Koopman-based Differentiable Predictive Control for the Dynamics-Aware Economic Dispatch Problem

论文作者

King, Ethan, Drgona, Jan, Tuor, Aaron, Abhyankar, Shrirang, Bakker, Craig, Bhattacharya, Arnab, Vrabie, Draguna

论文摘要

动态感知的经济调度(DED)问题嵌入了低水平的发电机动力和操作约束,以实现电力网络中发电单元的近乎实时调度。与传统的经济调度(T-ED)相比,DED产生了更具动态的监督控制政策,从而导致整体发电成本降低。但是,控制系统动力学的微分方程的结合使得DED的优化问题在计算上求解了。在这项工作中,我们提出了一种基于可区分编程的新数据驱动方法,以有效地获得基础DED问题的参数解决方案。特别是,我们使用最近提出的可区分预测控制(DPC),使用电源系统动力学的确定的Koopman操作员(KO)模型来离线学习显式神经控制策略。我们证明了DPC方法的高溶液质量和五个数量级的计算时间节省,而不是在9-BUS测试电网网络上基于在线优化的DED方法。

The dynamics-aware economic dispatch (DED) problem embeds low-level generator dynamics and operational constraints to enable near real-time scheduling of generation units in a power network. DED produces a more dynamic supervisory control policy than traditional economic dispatch (T-ED) that leads to reduced overall generation costs. However, the incorporation of differential equations that govern the system dynamics makes DED an optimization problem that is computationally prohibitive to solve. In this work, we present a new data-driven approach based on differentiable programming to efficiently obtain parametric solutions to the underlying DED problem. In particular, we employ the recently proposed differentiable predictive control (DPC) for offline learning of explicit neural control policies using an identified Koopman operator (KO) model of the power system dynamics. We demonstrate the high solution quality and five orders of magnitude computational-time savings of the DPC method over the original online optimization-based DED approach on a 9-bus test power grid network.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源