论文标题

粒子探测器构建中质量控制的深度学习应用

Deep learning applications for quality control in particle detector construction

论文作者

Akchurin, N., Damgov, J., Dugad, S., C, P. G, Grönroos, S., Lamichhane, K., Martinez, J., Quast, T., Undleeb, S., Whitbeck, A.

论文摘要

粒子探测器的复杂性日益增长的复杂性使其结构和质量控制成为新的挑战。我们提出的研究探讨了对基于深度学习的计算机视觉技术的使用来对探测器组件和组装步骤进行质量检查,这将自动化程序并最大程度地减少对人类干预的需求。这项研究的重点是硅检测器的构造步骤,该步骤涉及与传感器和电线键合的单个细胞形成机械结构,以读取信号。如今,高能物理实验中的硅探测器有数百万个通道。这些和其他高通道密度检测器的手动质量控制需要大量的劳动力,并且可能容易出错。在这里,我们探索计算机视觉应用程序,以增加或完全替换人类进行的视觉检查。我们研究了用于图像分类的卷积神经网络和用于异常检测的自动编码器。将提出两项概念证明研究。

The growing complexity of particle detectors makes their construction and quality control a new challenge. We present studies that explore the use of deep learning-based computer vision techniques to perform quality checks of detector components and assembly steps, which will automate procedures and minimize the need for human interventions. This study focuses on the construction steps of a silicon detector, which involve forming a mechanical structure with the sensor and wire bonding individual cells to electronics for reading out signals. Silicon detectors in high energy physics experiments today have millions of channels. Manual quality control of these and other high channel-density detectors requires enormous amounts of labor and can be prone to errors. Here, we explore computer vision applications to either augment or fully replace visual inspections done by humans. We investigated convolutional neural networks for image classification and autoencoders for anomalies detection. Two proof-of-concept studies will be presented.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源