论文标题

求解微分方程的量子内核方法

Quantum Kernel Methods for Solving Differential Equations

论文作者

Paine, Annie E., Elfving, Vincent E., Kyriienko, Oleksandr

论文摘要

我们提出了几种使用量子内核方法求解微分方程(DES)的方法。我们将量子模型作为内核函数的加权总和组成,其中使用特征图编码变量,并使用量子电路的自动分化表示模型导数。虽然以前的量子内核方法主要针对分类任务,但在这里,我们根据可用的数据和差异约束,考虑它们对回归任务的适用性。我们使用两种策略来解决这些问题。首先,我们使用基于内核的功能表示的试验解决方案设计了混合模型回归,该试验解决方案被训练以最大程度地减少特定差异约束或数据集的损失。其次,我们使用支持矢量回归,该回归说明了微分方程的结构。开发的方法能够求解线性和非线性系统。与用于参数化量子电路的主要混合变异方法相反,我们经典地对模型的权重进行训练。在某些条件下,这对应于凸优化问题,可以通过可证明的收敛到模型的全局最佳。所提出的方法也有利于硬件实现,因为优化仅使用评估的革兰氏集矩阵,但需要二次函数评估。我们重点介绍了将我们的方法与基于各种量子电路(例如最近提出的可区分量子电路(DQC)方法)进行比较时的权衡。所提出的方法使用量子特征图的力量通过丰富的内核表示提供了潜在的量子增强,并启动了可训练的量子量子求解器的追求。

We propose several approaches for solving differential equations (DEs) with quantum kernel methods. We compose quantum models as weighted sums of kernel functions, where variables are encoded using feature maps and model derivatives are represented using automatic differentiation of quantum circuits. While previously quantum kernel methods primarily targeted classification tasks, here we consider their applicability to regression tasks, based on available data and differential constraints. We use two strategies to approach these problems. First, we devise a mixed model regression with a trial solution represented by kernel-based functions, which is trained to minimize a loss for specific differential constraints or datasets. Second, we use support vector regression that accounts for the structure of differential equations. The developed methods are capable of solving both linear and nonlinear systems. Contrary to prevailing hybrid variational approaches for parametrized quantum circuits, we perform training of the weights of the model classically. Under certain conditions this corresponds to a convex optimization problem, which can be solved with provable convergence to global optimum of the model. The proposed approaches also favor hardware implementations, as optimization only uses evaluated Gram matrices, but require quadratic number of function evaluations. We highlight trade-offs when comparing our methods to those based on variational quantum circuits such as the recently proposed differentiable quantum circuits (DQC) approach. The proposed methods offer potential quantum enhancement through the rich kernel representations using the power of quantum feature maps, and start the quest towards provably trainable quantum DE solvers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源