论文标题

狙击后门:联邦学习中的单个客户针对的后门攻击

Sniper Backdoor: Single Client Targeted Backdoor Attack in Federated Learning

论文作者

Abad, Gorka, Paguada, Servio, Ersoy, Oguzhan, Picek, Stjepan, Ramírez-Durán, Víctor Julio, Urbieta, Aitor

论文摘要

联合学习(FL)可以对深度学习(DL)模型进行协作培训,其中保留了本地数据。像DL一样,FL具有严重的安全性弱点,例如攻击者可以利用模型反转和后门攻击。模型反转攻击重建了训练数据集中的数据,而后门仅将类别分类为包含特定属性的类,例如像素模式。后门在FL中很突出,旨在毒化每个客户模型,而模型反转攻击甚至可以针对一个客户。 本文介绍了一种新颖的技术,可以允许对后门攻击进行客户的目标,从而损害单个客户,而其余的则保持不变。该攻击利用了最新的模型反转和后门攻击。确切地说,我们利用生成对抗网络来执行模型反转。之后,我们遮蔽了FL网络,其中使用暹罗神经网络,我们可以识别,定位和对受害者的模型进行识别和重门。我们的攻击已通过MNIST,F-MNIST,EMNIST和CIFAR-100数据集进行了验证 - 在源(清洁)和目标(干净)和目标(后门)类别上,最高可达到99 \%的准确性,并且针对最新的防御措施,例如,在Neural Cleanse中,可以在未来开放一种新颖的威胁模型。

Federated Learning (FL) enables collaborative training of Deep Learning (DL) models where the data is retained locally. Like DL, FL has severe security weaknesses that the attackers can exploit, e.g., model inversion and backdoor attacks. Model inversion attacks reconstruct the data from the training datasets, whereas backdoors misclassify only classes containing specific properties, e.g., a pixel pattern. Backdoors are prominent in FL and aim to poison every client model, while model inversion attacks can target even a single client. This paper introduces a novel technique to allow backdoor attacks to be client-targeted, compromising a single client while the rest remain unchanged. The attack takes advantage of state-of-the-art model inversion and backdoor attacks. Precisely, we leverage a Generative Adversarial Network to perform the model inversion. Afterward, we shadow-train the FL network, in which, using a Siamese Neural Network, we can identify, target, and backdoor the victim's model. Our attack has been validated using the MNIST, F-MNIST, EMNIST, and CIFAR-100 datasets under different settings -- achieving up to 99\% accuracy on both source (clean) and target (backdoor) classes and against state-of-the-art defenses, e.g., Neural Cleanse, opening a novel threat model to be considered in the future.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源