论文标题

分形簇的互穿驱动在流动下形成的胶体凝胶中的弹性

Interpenetration of fractal clusters drives elasticity in colloidal gels formed upon flow cessation

论文作者

Dagès, Noémie, Bouthier, Louis V., Matthews, Lauren, Manneville, Sébastien, Divoux, Thibaut, Poulesquen, Arnaud, Gibaud, Thomas

论文摘要

胶体凝胶是由由有吸引力的棕色颗粒组成的平衡软固体,这些固体在低体积分数下形成跨太空网络。这些系统的弹性特性来自网络微观结构,这对剪切历史非常敏感。在这里,我们利用这种敏感性来调整由碳黑纳米颗粒制成的胶体凝胶的粘弹性。从施加的剪切速率$ \ dotγ_0$开始的流化状态开始,我们使用突然的流动停止来触发液体到固体过渡。我们观察到,当剪切速率$ \dotγ_0$较低并且可以将粘弹性光谱映射到主曲线上时,所得凝胶会更加弹性。此外,将风化计与小角度X射线散射耦合使我们可以证明凝胶微结构与仅观察到两个长度尺度的凝胶不同:胶体的尺寸和尺寸尺寸和分形聚集体。剪切和热能之间的竞争导致具有三个特征长度尺度的凝胶。这种凝胶结构在分形簇的渗透网络中相互互穿的网络。对具有各种剪切史的凝胶进行的实验表明,簇插入量随着剪切速率$ \ dotγ_0$的降低而增加,在流动停止之前应用。这些观察结果强烈表明簇互穿驱动凝胶弹性,我们使用结构模型确认。我们的结果与以前的文献形成鲜明对比,在先前的文献中,凝胶弹性要么与群集连接性或弯曲模式相关,要突出显示一个控制胶体凝胶宏观粘弹性特性的新型局部参数。

Colloidal gels are out of equilibrium soft solids composed of attractive Brownian particles that form a space-spanning network at low volume fractions. The elastic properties of these systems result from the network microstructure, which is very sensitive to shear history. Here, we take advantage of such sensitivity to tune the viscoelastic properties of a colloidal gel made of carbon black nanoparticles. Starting from a fluidized state under an applied shear rate $\dot γ_0$, we use an abrupt flow cessation to trigger a liquid-to-solid transition. We observe that the resulting gel is all the more elastic when the shear rate $\dot γ_0$ is low and that the viscoelastic spectra can be mapped on a master curve. Moreover, coupling rheometry to small angle X-ray scattering allows us to show that the gel microstructure is different from gels solely formed by thermal agitation where only two length scales are observed: the dimension of the colloidal and the dimension the fractal aggregates. Competition between shear and thermal energy leads to gels with three characteristic length scales. Such gels structure in a percolated network of fractal clusters that interpenetrate each other. Experiments on gels prepared with various shear histories reveal that cluster interpenetration increases with decreasing values of the shear rate $\dot γ_0$ applied before flow cessation. These observations strongly suggest that cluster interpenetration drives the gel elasticity, which we confirm using a structural model. Our results, which are in stark contrast with previous literature, where gel elasticity was either linked to cluster connectivity or to bending modes, highlight a novel local parameter controlling the macroscopic viscoelastic properties of colloidal gels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源