论文标题
基于DRT的锂离子细胞建模框架
DRT-based modelling framework for Li-ion cells
论文作者
论文摘要
对电池状态的正确评估对于在确保可靠且安全的操作的同时最大程度地发挥了电池组的性能至关重要。这项工作引入了EIS2Mod,这是一个基于弛豫时间(DRT)的分布的新型锂离子细胞的建模框架。基于物理的电路模型(ECM)是从电化学阻抗光谱(EIS)和开路电压(OCV)测量开始的。 DRT应用于EIS的电化学现象。提出的方法基于:i)来自EIS的DRT计算,II)ECM配置的DRT分析和III)模型参数提取和拟合。所提出的框架应用于大格式的锂离子袋细胞,这些框架在整个电荷(SOC)范围内进行了测试,温度范围(-10°C至35°C)进行了测试。已经测试了不同的电流轮廓以验证该模型,显示其在重现电池电池行为方面的高精度(例如,电池端子电压的RMSE在可变温度和SOC下的驾驶周期模拟低于1.50%的电池电压)。 EIS2MOD的另一个优点是其光计算负载,从而为电池管理系统实施提供了有吸引力的框架。
The correct assessment of battery states is essential to maximize battery pack performances while ensuring reliable and safe operation. This work introduces EIS2MOD, a novel modelling framework for Li-ion cells based on Distribution of Relaxation Time (DRT). A physically based Electric Circuit Model (ECM) is developed starting from Electrochemical Impedance Spectroscopy (EIS) and Open Circuit Voltage (OCV) measurements. DRT is applied to deconvolve the electrochemical phenomena from the EIS. The presented methodology is based on: i) DRT calculation from EIS, ii) DRT analysis for ECM configuration and iii) Model parameters extraction and fitting. The proposed framework is applied to large format Li-ion pouch cells, which are tested over the whole State of Charge (SoC) range and a wide temperature range (-10°C to 35°C). Different current profiles have been tested to validate the model, showing its high accuracy in reproducing the battery cell behavior (e.g. RMSE on the battery terminals voltage lower than 1.50% for driving cycle simulations at variable temperature and SoC). An additional advantage of EIS2MOD is its light computational load thus offering an attractive framework for battery management system implementation.