论文标题

hetermpc:多方对话中响应产生的异质图神经网络

HeterMPC: A Heterogeneous Graph Neural Network for Response Generation in Multi-Party Conversations

论文作者

Gu, Jia-Chen, Tan, Chao-Hong, Tao, Chongyang, Ling, Zhen-Hua, Hu, Huang, Geng, Xiubo, Jiang, Daxin

论文摘要

最近,两党对话的各种响应生成模型取得了令人印象深刻的改进,但是对多方对话(MPC)的努力减少了,这些对话更加实用和复杂。与对话环境是一系列话语的两党对话相比,为MPC构建响应生成模型更具挑战性,因为存在复杂的上下文结构,并且所产生的响应在很大程度上依赖于对话者(即说话者和地址者)和历史话语。为了应对这些挑战,我们提出了HeterMPC,这是一种基于图形的基于图的神经网络,用于MPC中的响应生成,该网络与图中的两种类型的节点同时建模了话语和对话者的语义。此外,我们还设计了六种类型的元关系,该关系与node-ged-type依赖性参数设计,以表征图中的异质相互作用。通过多跳更新,HeterMPC可以充分利用对话的结构知识进行响应。 Ubuntu Internet中继聊天(IRC)基准测试的实验结果表明,HeterMPC的表现优于MPC中响应的各种基线模型。

Recently, various response generation models for two-party conversations have achieved impressive improvements, but less effort has been paid to multi-party conversations (MPCs) which are more practical and complicated. Compared with a two-party conversation where a dialogue context is a sequence of utterances, building a response generation model for MPCs is more challenging, since there exist complicated context structures and the generated responses heavily rely on both interlocutors (i.e., speaker and addressee) and history utterances. To address these challenges, we present HeterMPC, a heterogeneous graph-based neural network for response generation in MPCs which models the semantics of utterances and interlocutors simultaneously with two types of nodes in a graph. Besides, we also design six types of meta relations with node-edge-type-dependent parameters to characterize the heterogeneous interactions within the graph. Through multi-hop updating, HeterMPC can adequately utilize the structural knowledge of conversations for response generation. Experimental results on the Ubuntu Internet Relay Chat (IRC) channel benchmark show that HeterMPC outperforms various baseline models for response generation in MPCs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源