论文标题
非自主系统的可观察性
Observability for Non-autonomous Systems
论文作者
论文摘要
我们研究非自主观察系统\ BEGIN {ALIGN*} \ dot {x}(t)= a(t)x(t),\ quad y(t)= c(t)= c(t)x(t),\ quad x(t)= x(0)= x_0 \ in x,\ end \ end \ end {align*},其中$(a(a(t))$是封闭的opertors opertor opertor opertor opertor opertor opertor oper opertor in and op ober $ x $($ x $)($ x $ $ x $(c) $ x $ to Banach Space $ y $。基于抽象的不确定性原理和耗散估计,我们证明该观察系统满足了可测量子集$ e \ subseteq [0,t],t> 0 $的最终状态可观察性估计。我们将上述结果的申请介绍给家庭$(a(t))$均匀椭圆形的差异操作员以及$ \ Mathrm {l}^p(\ mathbb {r}^d)$ p(l}^d)$ p(l}^d)$ p(t)$ p(t)$ p(t)$ p(t)$ p(t)$ p(r}^d)$ cobservation p(r}^d)$ p(r}^d)$ p(t)在非自主性强烈椭圆运算符的情况下,我们在集合$(ω(t))$的家族中得出了必要且充分的几何条件,以使相应的观察系统满足最终的可观察性估计。
We study non-autonomous observation systems \begin{align*} \dot{x}(t) = A(t) x(t),\quad y(t) = C(t) x(t),\quad x(0) = x_0\in X, \end{align*} where $(A(t))$ is a strongly measurable family of closed operators on a Banach space $X$ and $(C(t))$ is a family of bounded observation operators from $X$ to a Banach space $Y$. Based on an abstract uncertainty principle and a dissipation estimate, we prove that the observation system satisfies a final-state observability estimate in $\mathrm{L}^r(E; Y)$ for measurable subsets $E \subseteq [0,T], T > 0$. We present applications of the above result to families $(A(t))$ of uniformly strongly elliptic differential operators as well as non-autonomous Ornstein-Uhlenbeck operators $P(t)$ on $\mathrm{L}^p(\mathbb{R}^d)$ with observation operators $C(t)u = u|_{Ω(t)}$. In the setting of non-autonomous strongly elliptic operators, we derive necessary and sufficient geometric conditions on the family of sets $(Ω(t))$ such that the corresponding observation system satisfies a final-state observability estimate.