论文标题

高阶非线性schrödinger方程中的纳米翅目:离散的影响

Nanoptera In Higher-Order Nonlinear Schrödinger Equations: Effects Of Discretization

论文作者

Moston-Duggan, Aaron J., Porter, Mason A., Lustri, Christopher J.

论文摘要

我们考虑了我们称为“ karpman方程”的非线性schrödinger方程的概括,其中包括其他线性高级导数。奇异扰动的karpman方程以孤立波的形式产生广义的孤立波(GSW),并带有指数小的振荡性尾巴。纳米翅目是GSW的一种特殊情况,其中这些振荡性尾巴不会腐烂。先前关于连续三阶和四阶KARPMAN方程的研究表明,纳米翅目发生在特定的设置中。我们使用指数渐近技术来鉴定在奇异扰动的连续karpman方程中的行进纳米翅目。然后,我们通过将有限差异化离散化应用于连续的karpman方程并研究旅行波解决方案,从而研究离散化对纳米翅目的影响。有限差异化离散化将连续的karpman方程变成了预先延迟方程,我们使用指数渐近分析进行了研究。通过将这些离散karpman方程中的纳米翅目与连续对应物中的纳米翅目进行比较,我们表明纳米翅目尾巴中的振荡振幅和周期在连续和离散的方程式上有所不同。我们还表明,纳米翅目和衰减振荡溶液之间存在分叉的参数值取决于离散化的选择。最后,通过比较四阶karpman方程的不同高阶离散化,我们表明,分叉值对于大订单的非零常数趋向于非零常数,而不是像相关的连续karpman方程中的$ 0 $。

We consider generalizations of nonlinear Schrödinger equations, which we call "Karpman equations", that include additional linear higher-order derivatives. Singularly-perturbed Karpman equations produce generalized solitary waves (GSWs) in the form of solitary waves with exponentially small oscillatory tails. Nanoptera are a special case of GSWs in which these oscillatory tails do not decay. Previous research on continuous third-order and fourth-order Karpman equations has shown that nanoptera occur in specific settings. We use exponential asymptotic techniques to identify traveling nanoptera in singularly-perturbed continuous Karpman equations. We then study the effect of discretization on nanoptera by applying a finite-difference discretization to continuous Karpman equations and studying traveling-wave solutions. The finite-difference discretization turns a continuous Karpman equation into an advance--delay equation, which we study using exponential asymptotic analysis. By comparing nanoptera in these discrete Karpman equations with nanoptera in their continuous counterparts, we show that the oscillation amplitudes and periods in the nanoptera tails differ in the continuous and discretized equations. We also show that the parameter values at which there is a bifurcation between nanopteron and decaying oscillatory solutions depends on the choice of discretization. Finally, by comparing different higher-order discretizations of the fourth-order Karpman equation, we show that the bifurcation value tends to a nonzero constant for large orders, rather than to $0$ as in the associated continuous Karpman equation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源