论文标题

COPA:证明有力的脱机加强学习政策,以防止中毒攻击

COPA: Certifying Robust Policies for Offline Reinforcement Learning against Poisoning Attacks

论文作者

Wu, Fan, Li, Linyi, Xu, Chejian, Zhang, Huan, Kailkhura, Bhavya, Kenthapadi, Krishnaram, Zhao, Ding, Li, Bo

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

As reinforcement learning (RL) has achieved near human-level performance in a variety of tasks, its robustness has raised great attention. While a vast body of research has explored test-time (evasion) attacks in RL and corresponding defenses, its robustness against training-time (poisoning) attacks remains largely unanswered. In this work, we focus on certifying the robustness of offline RL in the presence of poisoning attacks, where a subset of training trajectories could be arbitrarily manipulated. We propose the first certification framework, COPA, to certify the number of poisoning trajectories that can be tolerated regarding different certification criteria. Given the complex structure of RL, we propose two certification criteria: per-state action stability and cumulative reward bound. To further improve the certification, we propose new partition and aggregation protocols to train robust policies. We further prove that some of the proposed certification methods are theoretically tight and some are NP-Complete problems. We leverage COPA to certify three RL environments trained with different algorithms and conclude: (1) The proposed robust aggregation protocols such as temporal aggregation can significantly improve the certifications; (2) Our certification for both per-state action stability and cumulative reward bound are efficient and tight; (3) The certification for different training algorithms and environments are different, implying their intrinsic robustness properties. All experimental results are available at https://copa-leaderboard.github.io.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源