论文标题
部分可观测时空混沌系统的无模型预测
Wave propagation for a discrete diffusive vaccination epidemic model with bilinear incidence
论文作者
论文摘要
当前论文的目的是研究具有双线性发病率的疫苗接种流行模型的发展波溶液(TWS)。存在结果由基本复制号$ \ re_0 $确定。更具体地说,当$ \ re_0> 1 $和$ c \ geq c^*$时,系统会接受非平凡的TWS,其中$ c^*$是关键波速度。我们还发现,TWS通过构建Lyapunov功能来连接两个不同的均衡。最后,我们从流行病学的角度给出了一些生物学解释。
The aim of the current paper is to study the existence of traveling wave solutions (TWS) for a vaccination epidemic model with bilinear incidence. The existence result is determined by the basic reproduction number $\Re_0$. More specifically, the system admits a nontrivial TWS when $\Re_0>1$ and $c \geq c^*$, where $c^*$ is the critical wave speed. We also found that the TWS is connecting two different equilibria by constructing Lyapunov functional. Lastly, we give some biological explanations from the perspective of epidemiology.