论文标题
在欧拉系统上出于动机和Heegner点
On Euler systems for motives and Heegner points
论文作者
论文摘要
我们为较高的等级欧拉系统制定了硫泽主要猜想,以实现一般动机。我们在轻度假设下证明了主要猜想的“一半”。我们还对Euler系统的“ Darmon型衍生物”进行了猜想,并将其应用于Tamagawa数字猜想。最后,我们将我们的一般框架专门针对Heegner点的设置,并根据等级的两个Euler系统对Heegner Point Main的自然解释进行了自然解释。
We formulate an Iwasawa main conjecture for a higher rank Euler system for a general motive. We prove "one half" of the main conjecture under mild hypotheses. We also formulate a conjecture on "Darmon-type derivatives" of Euler systems and give an application to the Tamagawa number conjecture. Lastly, we specialize our general framework to the setting of Heegner points and give a natural interpretation of the Heegner point main conjecture in terms of rank two Euler systems.