论文标题

量子曲线,复兴和确切的WKB

Quantum Curves, Resurgence and Exact WKB

论文作者

Alim, Murad, Hollands, Lotte, Tulli, Iván

论文摘要

我们研究了分辨的对照及其镜子上开放式拓扑弦的非扰动量子几何形状。我们的工具是开放式和封闭的字符串模量中的有限差方程,以及对其正式电力系列解决方案的复兴分析。在封闭设置中,我们为精制分区函数以及其Nekrasov-Shatashvili(NS)限制得出了新的有限差方程。我们为精制差方程写下了一个杰出的分析解决方案,该方程重现了精制拓扑字符串的预期非扰动含量。我们将该解决方案与NS极限中自由能的Borel分析进行了比较。我们发现,Borel变换的奇异性位于Borel平面中的许多射线上,Stokes跳过这些射线,编码了基础的Calabi-yau几何形状的相关的Donaldson-Thomas不变性。在开放环境中,有限差方程对应于镜曲线的规范量化。我们使用Borel分析和精确的WKB技术分析了此差异方程,并在相应的指数光谱网络中识别5D BPS状态。我们此外,在开放式和封闭环境中将复兴分析联系起来。这将我们引导我们进行Nekrasov-Shatashvili提案的五维扩展,其中根据一组特殊的光谱坐标,将NS自由能计算为$ Q $ - 差异OPERS的生成函数。最后,我们检查了描述相应量子整合系统的两个光谱问题。

We study the non-perturbative quantum geometry of the open and closed topological string on the resolved conifold and its mirror. Our tools are finite difference equations in the open and closed string moduli and the resurgence analysis of their formal power series solutions. In the closed setting, we derive new finite difference equations for the refined partition function as well as its Nekrasov-Shatashvili (NS) limit. We write down a distinguished analytic solution for the refined difference equation that reproduces the expected non-perturbative content of the refined topological string. We compare this solution to the Borel analysis of the free energy in the NS limit. We find that the singularities of the Borel transform lie on infinitely many rays in the Borel plane and that the Stokes jumps across these rays encode the associated Donaldson-Thomas invariants of the underlying Calabi-Yau geometry. In the open setting, the finite difference equation corresponds to a canonical quantization of the mirror curve. We analyze this difference equation using Borel analysis and exact WKB techniques and identify the 5d BPS states in the corresponding exponential spectral networks. We furthermore relate the resurgence analysis in the open and closed setting. This guides us to a five-dimensional extension of the Nekrasov-Rosly-Shatashvili proposal, in which the NS free energy is computed as a generating function of $q$-difference opers in terms of a special set of spectral coordinates. Finally, we examine two spectral problems describing the corresponding quantum integrable system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源