论文标题
碳化硅中的单V1中心的自旋光动力学和量子效率
Spin-optical dynamics and quantum efficiency of single V1 center in silicon carbide
论文作者
论文摘要
碳化硅中的颜色中心是由于宿主材料的可扩展性以及将整合到纳米光子谐振器中,是针对分布式自旋量子应用的新兴候选者。最近,碳化硅中的硅空置中心已被确定为具有出色自旋和光学特性的有前途的系统。在这里,我们深入研究了六边形晶格位点的单硅空置中心的自旋光动力学,即V1,在4H-Polytype碳化物中。通过利用谐振和上高生叶的脉冲激发,我们确定旋转依赖性的激发寿命和间跨系统交叉率。我们推断间交叉率的方法是基于全光脉冲初始化和读出方案,并且适用于具有相似动力学模型的旋转颜色中心。此外,根据使用电场模拟的连贯的光兔测量和局部磁场校准,评估了V1缺陷的光学转换偶极强度和V1缺陷的量子效率。测得的速率很好地解释了自旋状态极化动力学的结果,我们进一步讨论了谐振增强结构(例如辐射寿命缩短和Purcell增强)中的光发射动力学的改变。通过提供对V1中心的自旋光学动力学的透彻描述,我们的工作提供了对基于硅碳化物硅空置中心的可伸缩量子应用的实施的深入了解。
Color centers in silicon carbide are emerging candidates for distributed spin-based quantum applications due to the scalability of host materials and the demonstration of integration into nanophotonic resonators. Recently, silicon vacancy centers in silicon carbide have been identified as a promising system with excellent spin and optical properties. Here, we in-depth study the spin-optical dynamics of single silicon vacancy center at hexagonal lattice sites, namely V1, in 4H-polytype silicon carbide. By utilizing resonant and above-resonant sub-lifetime pulsed excitation, we determine spin-dependent excited-state lifetimes and intersystem-crossing rates. Our approach to inferring the intersystem-crossing rates is based on all-optical pulsed initialization and readout scheme, and is applicable to spin-active color centers with similar dynamics models. In addition, the optical transition dipole strength and the quantum efficiency of V1 defect are evaluated based on coherent optical Rabi measurement and local-field calibration employing electric-field simulation. The measured rates well explain the results of spin-state polarization dynamics, and we further discuss the altered photoemission dynamics in resonant enhancement structures such as radiative lifetime shortening and Purcell enhancement. By providing a thorough description of V1 center's spin-optical dynamics, our work provides deep understanding of the system which guides implementations of scalable quantum applications based on silicon vacancy centers in silicon carbide.