论文标题
违反弱重力猜想的行为
Bounding Violations of the Weak Gravity Conjecture
论文作者
论文摘要
黑洞弱重力猜想(WGC)是对爱因斯坦 - 马克斯韦理论的四个衍生校正的一组线性不等式。值得注意的是,在四个方面,这些组合出现在$ 2 \ 2 $的光子幅度中,从而希望可以使用分散关系来支持猜想。但是,由于重力交换而导致的向前极限产生的杆的存在极大地复杂化了这种论点的使用。在本文中,我们应用了最近开发的数值技术来处理重力杆,我们发现标准的分散参数不足以暗示黑洞WGC。具体而言,在一组相当典型的假设下,包括EFT和Regge界的弱耦合,对黑洞WGC的小侵犯与单位性和因果关系一致。我们量化了这种违规的大小,该违规的大小在重力分解并对数取决于红外截止的极限中消失。我们在各种情况下讨论这些界限的含义。我们还实施了一种无明显正频谱密度界限幅度的方法,该方法可以应用于任何非相同状态系统,我们使用它来改善在没有重力的情况下对纯光子的EFT的界限。
The black hole weak gravity conjecture (WGC) is a set of linear inequalities on the four-derivative corrections to Einstein--Maxwell theory. Remarkably, in four dimensions, these combinations appear in the $2 \to 2$ photon amplitudes, leading to the hope that the conjecture might be supported using dispersion relations. However, the presence of a pole arising in the forward limit due to graviton exchange greatly complicates the use of such arguments. In this paper, we apply recently developed numerical techniques to handle the graviton pole, and we find that standard dispersive arguments are not strong enough to imply the black hole WGC. Specifically, under a fairly typical set of assumptions, including weak coupling of the EFT and Regge boundedness, a small violation of the black hole WGC is consistent with unitarity and causality. We quantify the size of this violation, which vanishes in the limit where gravity decouples and also depends logarithmically on an infrared cutoff. We discuss the meaning of these bounds in various scenarios. We also implement a method for bounding amplitudes without manifestly positive spectral densities, which could be applied to any system of non-identical states, and we use it to improve bounds on the EFT of pure photons in absence of gravity.