论文标题

(2+1)d分数量子厅状态的对称性的边界

Symmetry-preserving boundary of (2+1)D fractional quantum Hall states

论文作者

Kobayashi, Ryohei

论文摘要

我们研究了具有全局对称性的(2+1)d拓扑阶段的对称性构成的边界,可以是骨气或费米子。我们为富含对称性或费米的拓扑阶段的边界条件开发了一个一般的代数描述,从而扩展了拉格朗日代数Anyon的框架,用于没有对称性的玻感相。然后,我们将重点放在使用U(1)对称性的情况下应用。我们为U(1)$^f $ -smmetric(2+1)d fermionic拓扑阶段提供了新的障碍物,为对称性扩大的边界,它们超出了手性中央电荷$ C _- $ C _- $和电动霍尔电导率$σ_H$。这些障碍物由一个简单的高斯 - 里格拉姆类型公式给出,对超模型类别有效,并被视为$ c _- $和$σ_h$的更高版本。

We investigate symmetry-preserving gapped boundary of (2+1)D topological phases with global symmetry, which can be either bosonic or fermionic. We develop a general algebraic description for gapped boundary condition for symmetry-enriched or fermionic topological phases, extending the framework of Lagrangian algebra anyon for bosonic phases without symmetry. We then focus on application to the case with U(1) symmetry. We derive new obstructions to symmetry-preserving gapped boundary for U(1)$^f$-symmetric (2+1)D fermionic topological phases, which are beyond chiral central charge $c_-$ and electric Hall conductivity $σ_H$. These obstructions are given by a simple Gauss-Milgram type formula valid for super-modular category, and regarded as a higher version of $c_-$ and $σ_H$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源