论文标题

tortify 2022的UOFA-TRUTH:基于变压器和转移学习的多模式事实检查

UofA-Truth at Factify 2022 : Transformer And Transfer Learning Based Multi-Modal Fact-Checking

论文作者

Dhankar, Abhishek, Zaïane, Osmar R., Bolduc, Francois

论文摘要

识别假新闻是一项非常艰巨的任务,尤其是在考虑通过文本,图像,视频和/或音频传达信息的多种模式时。我们试图通过我们简单而有效的方法在de-factify@aaai2022中的分类任务中解决多模式新闻源(包括文本和图像)中自动错误信息/虚假信息检测的问题。我们的模型产生的F1加权分数为74.807%,这是所有提交中第四大的。在本文中,我们将解释我们执行共同任务的方法。

Identifying fake news is a very difficult task, especially when considering the multiple modes of conveying information through text, image, video and/or audio. We attempted to tackle the problem of automated misinformation/disinformation detection in multi-modal news sources (including text and images) through our simple, yet effective, approach in the FACTIFY shared task at De-Factify@AAAI2022. Our model produced an F1-weighted score of 74.807%, which was the fourth best out of all the submissions. In this paper we will explain our approach to undertake the shared task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源