论文标题
签名$(P,P,2)$和$(p,p,3)$的渐近费马特
Asymptotic Fermat for signatures $(p,p,2)$ and $(p,p,3)$ over totally real fields
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Let $K$ be a totally real number field and consider a Fermat-type equation $Aa^p+Bb^q=Cc^r$ over $K$. We call the triple of exponents $(p,q,r)$ the signature of the equation. We prove various results concerning the solutions to the Fermat equation with signature $(p,p,2)$ and $(p,p,3)$ using a method involving modularity, level lowering and image of inertia comparison. These generalize and extend the recent work of Işik, Kara and Ozman. For example, consider $K$ a totally real field of degree $n$ with $2 \nmid h_K^+$ and $2$ inert. Moreover, suppose there is a prime $q\geq 5$ which totally ramifies in $K$ and satisfies $\gcd(n,q-1)=1$, then we know that the equation $a^p+b^p=c^2$ has no primitive, non-trivial solutions $(a,b,c) \in \mathcal{O}_K^3$ with $2 | b$ for $p$ sufficiently large.