论文标题
使用拉普拉斯近似的生成模型和贝叶斯反演
Generative models and Bayesian inversion using Laplace approximation
论文作者
论文摘要
解决反问题的贝叶斯方法取决于先验的选择。这种关键成分允许以概率方式制定专家知识或物理约束,并在推理的成功中起着重要作用。最近,使用生成模型作为信息丰富的先验,解决了贝叶斯反问题。生成模型是机器学习中流行的工具,该工具生成数据,其属性与给定数据库的属性非常相似。通常,生成的数据分布嵌入到低维歧管中。对于反问题,在数据库上训练了一个生成模型,该模型反映了寻求解决方案的特性,例如磁共振(MR)成像中人脑中组织的典型结构。该推论是在由生成模型确定的低维流形中进行的,该模型强烈降低了反问题的维度。但是,该程序产生的后部是在实际变量中不承认Lebesgue密度,并且达到的准确性可以很大程度上取决于生成模型的质量。对于线性高斯模型,我们探索了一种基于概率生成模型的替代性贝叶斯推断,该推断是在原始的高维空间中进行的。使用Laplace近似来分析生成模型引起的所需的先验概率密度函数。研究了所产生的推断的特性。具体而言,我们表明,与使用生成模型的低维歧管的方法相反,派生的贝叶斯估计值是一致的。 MNIST数据集用于构建数值实验,以证实我们的理论发现。
The Bayesian approach to solving inverse problems relies on the choice of a prior. This critical ingredient allows the formulation of expert knowledge or physical constraints in a probabilistic fashion and plays an important role for the success of the inference. Recently, Bayesian inverse problems were solved using generative models as highly informative priors. Generative models are a popular tool in machine learning to generate data whose properties closely resemble those of a given database. Typically, the generated distribution of data is embedded in a low-dimensional manifold. For the inverse problem, a generative model is trained on a database that reflects the properties of the sought solution, such as typical structures of the tissue in the human brain in magnetic resonance (MR) imaging. The inference is carried out in the low-dimensional manifold determined by the generative model which strongly reduces the dimensionality of the inverse problem. However, this proceeding produces a posterior that admits no Lebesgue density in the actual variables and the accuracy reached can strongly depend on the quality of the generative model. For linear Gaussian models we explore an alternative Bayesian inference based on probabilistic generative models which is carried out in the original high-dimensional space. A Laplace approximation is employed to analytically derive the required prior probability density function induced by the generative model. Properties of the resulting inference are investigated. Specifically, we show that derived Bayes estimates are consistent, in contrast to the approach employing the low-dimensional manifold of the generative model. The MNIST data set is used to construct numerical experiments which confirm our theoretical findings.