论文标题
关于与非遗物鲍尔等效关系相关的von Neumann代数的丰富性
On fullness of von Neumann algebras associated with non-singular Borel equivalence relations
论文作者
论文摘要
Houdayer-isono表明,如果该组是可计数的,并且该动作是强烈的,基本上是免费的且非符号的,则组测量空间von Neumann代数是一个完整的因素。最近,Brothier-Deprez-Vaes引入了本地紧凑型组的双重性。在本文中,我们将证明Houdayer-isono类型的结果适用于本地紧凑型组。
It is shown by Houdayer-Isono that a group measure space von Neumann algebra is a full factor if the group is countable discrete and bi-exact, and the action is strongly ergodic, essentially free and non-singular. Recently, bi-exactness for locally compact groups was introduced by Brothier-Deprez-Vaes. In this paper, we will show that Houdayer-Isono type result holds for bi-exact locally compact groups.