论文标题

Pólya的欧几里得球的猜想

Pólya's conjecture for Euclidean balls

论文作者

Filonov, Nikolay, Levitin, Michael, Polterovich, Iosif, Sher, David A.

论文摘要

著名的pólya的猜想(1954年)在光谱几何形状中指出,迪里奇莱特和诺伊曼·拉普拉斯人在有限​​的欧几里得领域上的特征值计数函数可以通过魏尔的渐近学的领先术语来估算。 Pólya的猜想对于euclidean瓷砖空间的域而言是正确的,此外,对于更高维度的某些特殊域而言。在本文中,我们证明了Pólya对磁盘的猜想,这使其成为了对猜想得到验证的第一个非平面平面域。我们还确认了Pólya对任意平面部门的猜想,在Dirichlet案例中,对任何维度的球。一路上,我们在磁盘中的光谱问题与某些晶格计数问题之间建立了已知的联系。在最后一位命名作者的最新作品中,观察结果是一种关键的成分,即相应的特征值和晶格计数函数不仅渐近地相关,而且实际上满足了某些统一界限。我们的证据纯粹是分析性的,除了在磁盘中的Neumann问题的情况下,需要涵盖光谱参数值的简短间隔所需的严格的计算机辅助参数。

The celebrated Pólya's conjecture (1954) in spectral geometry states that the eigenvalue counting functions of the Dirichlet and Neumann Laplacian on a bounded Euclidean domain can be estimated from above and below, respectively, by the leading term of Weyl's asymptotics. Pólya's conjecture is known to be true for domains which tile Euclidean space, and, in addition, for some special domains in higher dimensions. In this paper, we prove Pólya's conjecture for the disk, making it the first non-tiling planar domain for which the conjecture is verified. We also confirm Pólya's conjecture for arbitrary planar sectors, and, in the Dirichlet case, for balls of any dimension. Along the way, we develop the known links between the spectral problems in the disk and certain lattice counting problems. A key novel ingredient is the observation, made in recent work of the last named author, that the corresponding eigenvalue and lattice counting functions are related not only asymptotically, but in fact satisfy certain uniform bounds. Our proofs are purely analytic, except for a rigorous computer-assisted argument needed to cover the short interval of values of the spectral parameter in the case of the Neumann problem in the disk.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源