论文标题

坚固的非刚性形状匹配的隐式现场监督

Implicit field supervision for robust non-rigid shape matching

论文作者

Sundararaman, Ramana, Pai, Gautam, Ovsjanikov, Maks

论文摘要

在两个非辅助变形形状之间建立对应关系是视觉计算中最根本的问题之一。当对现实世界中的挑战(例如噪声,异常值,自我批判等)提出挑战时,现有方法通常会表现出较弱的弹性。另一方面,自动描述器在学习几何有意义的潜在潜在嵌入方面表现出强大的表现力。但是,它们在\ emph {形状分析}中的使用受到限制。在本文中,我们介绍了一种基于自动码头框架的方法,该方法在固定模板上学习了一个连续形状的变形字段。通过监督点在表面上的变形场,并通过小说\ emph {签名距离正则化}(SDR)正规化点偏面的正规化,我们学习了模板和Shape \ emph {卷}之间的对齐。经过干净的水密网格培训,\ emph {没有}任何数据启发,我们在数据和现实世界扫描中证明了令人信服的性能。

Establishing a correspondence between two non-rigidly deforming shapes is one of the most fundamental problems in visual computing. Existing methods often show weak resilience when presented with challenges innate to real-world data such as noise, outliers, self-occlusion etc. On the other hand, auto-decoders have demonstrated strong expressive power in learning geometrically meaningful latent embeddings. However, their use in \emph{shape analysis} has been limited. In this paper, we introduce an approach based on an auto-decoder framework, that learns a continuous shape-wise deformation field over a fixed template. By supervising the deformation field for points on-surface and regularising for points off-surface through a novel \emph{Signed Distance Regularisation} (SDR), we learn an alignment between the template and shape \emph{volumes}. Trained on clean water-tight meshes, \emph{without} any data-augmentation, we demonstrate compelling performance on compromised data and real-world scans.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源