论文标题

可重复使用的资源的在线任务分配问题

Online Task Assignment Problems with Reusable Resources

论文作者

Sumita, Hanna, Ito, Shinji, Takemura, Kei, Hatano, Daisuke, Fukunaga, Takuro, Kakimura, Naonori, Kawarabayashi, Ken-ichi

论文摘要

我们研究了在线任务分配问题,可重复使用的资源,这是由诸如乘车,众包和工作招聘的实用应用所激发的。在这个问题中,我们将获得一组离线顶点(代理),并且在每次在线顶点(任务)根据已知的时间相关分布随机到达。到达后,我们立即将任务分配给代理商。问题的目的是最大化完成任务所产生的预期总利润。我们问题的关键特征是(1)代理可以重复使用,即代理在完成分配的任务后返回市场,(2)代理商可能会拒绝分配的任务以保持市场,并且(3)任务可以容纳多个代理商。设置概括了现有工作的设置,其中将在线任务分配给(1)下的一个代理。 在本文中,我们提出了一种在线算法,对于上述设置而言,该算法是$ 1/2 $竞争的,这很紧张。此外,当每个代理最多可以以$δ$次拒绝分配的任务时,该算法被证明具有竞争比$Δ/(3Δ-1)\ geq 1/3 $。我们还通过数值实验评估了我们提出的算法。

We study online task assignment problem with reusable resources, motivated by practical applications such as ridesharing, crowdsourcing and job hiring. In the problem, we are given a set of offline vertices (agents), and, at each time, an online vertex (task) arrives randomly according to a known time-dependent distribution. Upon arrival, we assign the task to agents immediately and irrevocably. The goal of the problem is to maximize the expected total profit produced by completed tasks. The key features of our problem are (1) an agent is reusable, i.e., an agent comes back to the market after completing the assigned task, (2) an agent may reject the assigned task to stay the market, and (3) a task may accommodate multiple agents. The setting generalizes that of existing work in which an online task is assigned to one agent under (1). In this paper, we propose an online algorithm that is $1/2$-competitive for the above setting, which is tight. Moreover, when each agent can reject assigned tasks at most $Δ$ times, the algorithm is shown to have the competitive ratio $Δ/(3Δ-1)\geq 1/3$. We also evaluate our proposed algorithm with numerical experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源