论文标题

距离距离最佳多代理路径的精致硬度

Refined Hardness of Distance-Optimal Multi-Agent Path Finding

论文作者

Geft, Tzvika, Halperin, Dan

论文摘要

我们研究了多试路径发现(MAPF)的计算复杂性。给定图形$ g $和一组代理,每个代理都有一个起始和目标顶点,目标是找到最小化总距离的无碰撞路径。为了更好地了解问题的难度,我们旨在研究它仍然很难的最简单和最不受限制的图类别。为此,我们将$ g $限制为2D网格,这是一个无处不在的抽象,因为它可以方便地建模结构良好的环境(例如仓库)。先前的硬度结果被认为是高度约束的2D网格,只有一个由代理占据的顶点,而允许多个空顶点的最有限的硬度结果是(非网格)平面图。因此,我们通过同时考虑2D网格和多个空顶点来完善先前的结果。我们表明,即使在这种情况下,距离最佳的MAPF仍然是NP-HARD,这解决了Banfi等人构成的开放问题。 (2017)。我们使用简单的小工具直接从3-SAT中介绍了一个减少,这使我们的证明比以前的工作更具信息性,而在潜在的进步方面取得了积极的结果。此外,我们的减少是$ g $是平面的第一个线性,在第一个相关结果后近四十年出现。这使我们能够进一步迈出一步,并利用指数时间假设(ETH)获得问题运行时间的指数下限。最后,作为对我们主要结果的垫脚石,我们证明了单调案例的NP硬度,其中代理商一一移动而没有中间停止。

We study the computational complexity of multi-agent path finding (MAPF). Given a graph $G$ and a set of agents, each having a start and target vertex, the goal is to find collision-free paths minimizing the total distance traveled. To better understand the source of difficulty of the problem, we aim to study the simplest and least constrained graph class for which it remains hard. To this end, we restrict $G$ to be a 2D grid, which is a ubiquitous abstraction, as it conveniently allows for modeling well-structured environments (e.g., warehouses). Previous hardness results considered highly constrained 2D grids having only one vertex unoccupied by an agent, while the most restricted hardness result that allowed multiple empty vertices was for (non-grid) planar graphs. We therefore refine previous results by simultaneously considering both 2D grids and multiple empty vertices. We show that even in this case distance-optimal MAPF remains NP-hard, which settles an open problem posed by Banfi et al. (2017). We present a reduction directly from 3-SAT using simple gadgets, making our proof arguably more informative than previous work in terms of potential progress towards positive results. Furthermore, our reduction is the first linear one for the case where $G$ is planar, appearing nearly four decades after the first related result. This allows us to go a step further and exploit the Exponential Time Hypothesis (ETH) to obtain an exponential lower bound for the running time of the problem. Finally, as a stepping stone towards our main results, we prove the NP-hardness of the monotone case, in which agents move one by one with no intermediate stops.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源