论文标题
Simhawnet:用于时间网络模拟的修改后的霍克斯进程
SimHawNet: A Modified Hawkes Process for Temporal Network Simulation
论文作者
论文摘要
时间网络允许在合并时间维度的同时表示对象之间的连接。尽管静态网络模型可以捕获不变的拓扑规律,但它们通常无法对与及时发生的网络的因果生成过程相关的效果进行建模。因此,利用网络的时间方面一直是许多最近研究的重点。在这种情况下,我们为连续时间时间网络的生成模型提出了一个新框架。我们假设时间网络中边缘的激活是由指定的时间点过程驱动的。这种方法允许将事件之间的等待时间直接建模,同时将基于时间变化的历史记录特征作为预测中的协变量进行建模。结合用于点过程模拟的变薄算法,Simhawnet可以在连续时间内模拟时间网络的演变。最后,我们介绍了一个全面的评估框架,以评估这种方法的性能,在这种方法中,我们证明Simhawnet成功模拟了网络的演变,其生成过程非常不同,并且实现了与艺术状态相当的性能,同时又大得多。
Temporal networks allow representing connections between objects while incorporating the temporal dimension. While static network models can capture unchanging topological regularities, they often fail to model the effects associated with the causal generative process of the network that occurs in time. Hence, exploiting the temporal aspect of networks has been the focus of many recent studies. In this context, we propose a new framework for generative models of continuous-time temporal networks. We assume that the activation of the edges in a temporal network is driven by a specified temporal point process. This approach allows to directly model the waiting time between events while incorporating time-varying history-based features as covariates in the predictions. Coupled with a thinning algorithm designed for the simulation of point processes, SimHawNet enables simulation of the evolution of temporal networks in continuous time. Finally, we introduce a comprehensive evaluation framework to assess the performance of such an approach, in which we demonstrate that SimHawNet successfully simulates the evolution of networks with very different generative processes and achieves performance comparable to the state of the art, while being significantly faster.