论文标题
Seshadri常数的下限通过线束的连续最小值
Lower bounds for Seshadri constants via successive minima of line bundles
论文作者
论文摘要
给定投影型品种$ x $ d \ geq 2 $的Nef和Big Line Bundle $ l $,我们证明非常通用点的$ l $的$ l $大于$(d+1)^{\ frac {\ frac {1} {1} {d} {d} {d} -1} $。这略微改善了EIN,Küchle和Lazarsfeld建立的下限$ 1/D $。证据依赖于Ambro和Ito最近引入的连续最小值概念。
Given a nef and big line bundle $L$ on a projective variety $X$ of dimension $d \geq 2$, we prove that the Seshadri constant of $L$ at a very general point is larger than $(d+1)^{\frac{1}{d}-1}$. This slightly improves the lower bound $1/d$ established by Ein, Küchle and Lazarsfeld. The proof relies on the concept of successive minima for line bundles recently introduced by Ambro and Ito.