论文标题
基于目标的不确定性定量和最佳实验设计的神经信息传递
Neural Message Passing for Objective-Based Uncertainty Quantification and Optimal Experimental Design
论文作者
论文摘要
各种现实世界的科学应用涉及具有许多未知参数的复杂不确定系统的数学建模。准确的参数估计通常在此类系统中实际上是不可行的,因为可用的培训数据可能不足,并且获取其他数据的成本可能很高。在这种情况下,基于贝叶斯范式,我们可以设计强大的操作员,以保留所有可能的模型和设计最佳实验的最佳总体性能,这些实验可以有效地降低不确定性,从而最大程度地提高此类操作员的性能。尽管基于目标的不确定性量化(Objective-UQ)基于MOCU(不确定性的平均客观成本)为量化复杂系统中的不确定性提供了一种有效的手段,但估算MOCU的高计算成本在将其应用于现实世界中的科学/工程问题上是一个挑战。在这项工作中,我们提出了一个新的方案,以基于数据驱动的方法来降低通过MOCU的Objective-UQ的计算成本。我们采用神经消息模型来替代建模,并结合了新型的公理约束损失,从而损害了估计系统不确定性的增加。作为一个说明性的例子,我们考虑了不确定库拉莫托模型的最佳实验设计(OED)问题,其目标是预测可以通过降低不确定性来最有效地增强鲁棒同步性能的实验。我们表明,我们提出的方法可以将基于MOCU的OED加速四到五个数量级,而与最先进的方法相比,没有任何可见的性能损失。提出的方法适用于库拉莫托模型之外的一般OED任务。
Various real-world scientific applications involve the mathematical modeling of complex uncertain systems with numerous unknown parameters. Accurate parameter estimation is often practically infeasible in such systems, as the available training data may be insufficient and the cost of acquiring additional data may be high. In such cases, based on a Bayesian paradigm, we can design robust operators retaining the best overall performance across all possible models and design optimal experiments that can effectively reduce uncertainty to enhance the performance of such operators maximally. While objective-based uncertainty quantification (objective-UQ) based on MOCU (mean objective cost of uncertainty) provides an effective means for quantifying uncertainty in complex systems, the high computational cost of estimating MOCU has been a challenge in applying it to real-world scientific/engineering problems. In this work, we propose a novel scheme to reduce the computational cost for objective-UQ via MOCU based on a data-driven approach. We adopt a neural message-passing model for surrogate modeling, incorporating a novel axiomatic constraint loss that penalizes an increase in the estimated system uncertainty. As an illustrative example, we consider the optimal experimental design (OED) problem for uncertain Kuramoto models, where the goal is to predict the experiments that can most effectively enhance robust synchronization performance through uncertainty reduction. We show that our proposed approach can accelerate MOCU-based OED by four to five orders of magnitude, without any visible performance loss compared to the state-of-the-art. The proposed approach applies to general OED tasks, beyond the Kuramoto model.