论文标题
在半毛线范围报告中
On Semialgebraic Range Reporting
论文作者
论文摘要
在半距离范围搜索的问题中,我们将在$ \ mathbb {r}^d $中预先处理一组点,以便可以有效地找到由$ o(1)$ o(1)$ o(1)$ o(1)$ o(1)$ polynomial nemial nemialgebraic区域的子集。 相对较最近,在这个问题上取得了一些重大进展。使用代数技术,获得了几乎最佳查询时间$ q(n)= o(n^{1-1/d+o(1)})$几乎最佳查询时间的“接近线性空间”结构[AMS13,MP15]。对于“快速查询”结构(即,当$ q(n)= n^{o(1)} $时,可以猜想一个具有空格$ s(n)= o(n^{d+o(1)})$的结构是可能的。该猜想最近被Afshani和Cheng [AC21]驳斥。在飞机上,他们证明了$ s(n)=ω(n^{δ+1 -o(1)}/q(n)^{(δ+3)δ/2})$,显示$ω(n^{Δ+1-o(1-o(1))$空间需要$ q(n^+q(n)= n^n^{o(1)} $。尽管这驳斥了猜想,但它仍然留下许多未解决的问题:下限仅在2D和快速查询中起作用,而$ n $或$ q(n)$的指数似乎也很紧张,即使对于$ d = 2 $,因为当前的上限为$ s(n)= $ s(n)= o(n^{\ boldsymbol {m}+o(1)}/q(n)^{(\ boldsymbol {m} -1)-1)d/(d-1))$其中$ \ boldsymbol {m} = \ binom {d} $δ$ $ d $ - 变量多项式,对于任何$ d,δ= o(1)$。 在本文中,我们解决了两个问题:我们证明了$ d $ dimensions中的下限,并表明当$ q(n)= n^{o(1)}+o(k)$,$ s(n)=ω(n^{\ boldsymbol {m} -o(1)-o(1)} $ n几乎是$ n $ n $ n是$ n $ n是$ n $ n是$ n $ n $ n $ n是$ n $ n $ n是$ n $ n是$ n $ n $ n是$ n $ n是$ n $ n是$ n $ n $ n $ n $ n是$ n $ n $ n $ n $ n是$ n $ nistons,在考虑$ q(n)$的指数时,我们表明[AC21]中的分析对于$ d = 2 $,通过为统一的随机点集提供匹配的上限,对$ d = 2 $。这表明可以改善现有的上限,或者需要一个新的不同输入集以获得更好的下限。
In the problem of semialgebraic range searching, we are to preprocess a set of points in $\mathbb{R}^D$ such that the subset of points inside a semialgebraic region described by $O(1)$ polynomial inequalities of degree $Δ$ can be found efficiently. Relatively recently, several major advances were made on this problem. Using algebraic techniques, "near-linear space" structures [AMS13,MP15] with almost optimal query time of $Q(n)=O(n^{1-1/D+o(1)})$ were obtained. For "fast query" structures (i.e., when $Q(n)=n^{o(1)}$), it was conjectured that a structure with space $S(n) = O(n^{D+o(1)})$ is possible. The conjecture was refuted recently by Afshani and Cheng [AC21]. In the plane, they proved that $S(n) = Ω(n^{Δ+1 - o(1)}/Q(n)^{(Δ+3)Δ/2})$ which shows $Ω(n^{Δ+1-o(1)})$ space is needed for $Q(n) = n^{o(1)}$. While this refutes the conjecture, it still leaves a number of unresolved issues: the lower bound only works in 2D and for fast queries, and neither the exponent of $n$ or $Q(n)$ seem to be tight even for $D=2$, as the current upper bound is $S(n) = O(n^{\boldsymbol{m}+o(1)}/Q(n)^{(\boldsymbol{m}-1)D/(D-1)})$ where $\boldsymbol{m}=\binom{D+Δ}{D}-1 = Ω(Δ^D)$ is the maximum number of parameters to define a monic degree-$Δ$ $D$-variate polynomial, for any $D,Δ=O(1)$. In this paper, we resolve two of the issues: we prove a lower bound in $D$-dimensions and show that when $Q(n)=n^{o(1)}+O(k)$, $S(n)=Ω(n^{\boldsymbol{m}-o(1)})$, which is almost tight as far as the exponent of $n$ is considered in the pointer machine model. When considering the exponent of $Q(n)$, we show that the analysis in [AC21] is tight for $D=2$, by presenting matching upper bounds for uniform random point sets. This shows either the existing upper bounds can be improved or a new fundamentally different input set is needed to get a better lower bound.