论文标题

微型旋转无人机的增量控制系统设计和飞行测试

Incremental Control System Design and Flight Tests of a Micro-Coaxial Rotor UAV

论文作者

Liu, Z. C., Zhang, Y. F., zhang, Z. D., Chen, H. X.

论文摘要

在本文中,将增量非线性动态反转(INDI)方法应用于同轴转子无人机的控制系统设计。控制系统设计解决了空气动力学不确定性和抗扰动问题。设计的控制器可提供出色的飞行性能和控制鲁棒性。为状态导数的延迟问题提出了增量增益法(IGM)。该方法具有较少的计算负载和简单参数调整的优点,这为将INDI控制器应用于同轴转子无人机提供了极好的便利性。 IgM的原理通过离散系统的稳定性分析方法证明,IgM的参数选择策略将通过仿真详细分析。通过非线性动态反演(NDI)和INDI的比较飞行测试来验证控制器设计方法的优势。实验结果表明,在相同的风速下,INDI的平均轨迹跟踪误差仅为NDI的平均轨迹误差。当角加速度延迟小于0.06 s时,IgM可以轻松保持系统稳定。此外,在明显的模型误差和强烈的输入干扰下,INDI具有更好的鲁棒性。

In this paper, the incremental nonlinear dynamic inversion (INDI) method is applied to the control system design of coaxial rotor UAVs. The aerodynamic uncertainty and anti-disturbance problems are solved in the control system design. The designed controller gives the UAV excellent flight performance and control robustness. An incremental gain method (IGM) is proposed for the delay problem of the state derivative. This method has the advantages of less calculation load and simple parameter adjustment, which provides excellent convenience for applying INDI controllers to coaxial rotor UAVs. The principle of IGM is demonstrated by the stability analysis method of the discrete system, and the parameter selection strategy of the IGM is analyzed in detail by simulation. The advantages of the controller design method are verified by comparative flight tests of nonlinear dynamic inversion (NDI) and INDI. The experimental results show that the average trajectory tracking error of INDI is only 58.3% of that of NDI under the same wind speed. When the angular acceleration delay is less than 0.06 s, IGM can easily keep the system stable. In addition, INDI has better robustness under obvious model errors and strong input disturbance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源