论文标题
通过功能混合积极学习
Active Learning by Feature Mixing
论文作者
论文摘要
积极学习的承诺(AL)是通过选择最有价值的示例来降低标签成本,以从一个未标记的数据中注释。通过高维数据(例如图像,视频)和低数据制度,识别这些示例尤其具有挑战性。在本文中,我们提出了一种称为Alfa-Mix的批处理方法的新方法。我们通过在其表示的干预措施中寻找不一致的预测,以确定具有足够特征的未标记实例。我们在标记和未标记实例的表示形式之间构建插值,然后检查预测的标签。我们表明,这些预测中的不一致有助于发现模型在未标记的实例中无法识别的功能。我们基于封闭式解决方案得出有效的实现,以最佳插值导致预测变化。我们的方法在图像,视频和非视觉数据的12个基准上的30个不同设置中的所有最新方法都优于所有最新方法。在低数据制度和自我训练的视觉变形金刚中,这些改进尤其重要,在这种变压器中,ALFA-MIX的表现分别超过了59%和43%的实验。
The promise of active learning (AL) is to reduce labelling costs by selecting the most valuable examples to annotate from a pool of unlabelled data. Identifying these examples is especially challenging with high-dimensional data (e.g. images, videos) and in low-data regimes. In this paper, we propose a novel method for batch AL called ALFA-Mix. We identify unlabelled instances with sufficiently-distinct features by seeking inconsistencies in predictions resulting from interventions on their representations. We construct interpolations between representations of labelled and unlabelled instances then examine the predicted labels. We show that inconsistencies in these predictions help discovering features that the model is unable to recognise in the unlabelled instances. We derive an efficient implementation based on a closed-form solution to the optimal interpolation causing changes in predictions. Our method outperforms all recent AL approaches in 30 different settings on 12 benchmarks of images, videos, and non-visual data. The improvements are especially significant in low-data regimes and on self-trained vision transformers, where ALFA-Mix outperforms the state-of-the-art in 59% and 43% of the experiments respectively.