论文标题
精确的原子通过深度加固学习
Precise atom manipulation through deep reinforcement learning
论文作者
论文摘要
扫描隧道显微镜中的原子尺度操纵使基于人工结构的量子状态和基于单个原子的计算电路的极端微型化,从而创建了物质的量子状态。自主排列原子结构精确的能力将使纳米级制造的扩展并扩大人造结构的范围,这些结构托有异国量子状态。但是,\ textIt {先验}未知的操纵参数,自发尖端顶点更改的可能性以及建模尖端原子相互作用的难度使得选择可以在整个扩展操作过程中实现原子精度的操纵参数的选择都具有挑战性。在这里,我们使用深度加固学习(DRL)来控制现实世界的操纵过程。共同使用了几种最先进的增强学习技术来提高数据效率。强化学习者学会了以最佳的精度操纵Ag(111)表面上的Ag Atatoms,并与路径规划算法集成以完成自主原子组装系统。结果表明,最先进的深度强化学习可以为纳米制作中的现实世界挑战提供有效的解决方案,并在原子量表上为日益复杂的科学实验提供了有效的方法。
Atomic-scale manipulation in scanning tunneling microscopy has enabled the creation of quantum states of matter based on artificial structures and extreme miniaturization of computational circuitry based on individual atoms. The ability to autonomously arrange atomic structures with precision will enable the scaling up of nanoscale fabrication and expand the range of artificial structures hosting exotic quantum states. However, the \textit{a priori} unknown manipulation parameters, the possibility of spontaneous tip apex changes, and the difficulty of modeling tip-atom interactions make it challenging to select manipulation parameters that can achieve atomic precision throughout extended operations. Here we use deep reinforcement learning (DRL) to control the real-world atom manipulation process. Several state-of-the-art reinforcement learning techniques are used jointly to boost data efficiency. The reinforcement learning agent learns to manipulate Ag adatoms on Ag(111) surfaces with optimal precision and is integrated with path planning algorithms to complete an autonomous atomic assembly system. The results demonstrate that state-of-the-art deep reinforcement learning can offer effective solutions to real-world challenges in nanofabrication and powerful approaches to increasingly complex scientific experiments at the atomic scale.