论文标题

在Büchi和Co-Büchi游戏中(几乎)(几乎 - )玩(几乎)

Playing (Almost-)Optimally in Concurrent Büchi and co-Büchi Games

论文作者

Bordais, Benjamin, Bouyer, Patricia, Roux, Stéphane Le

论文摘要

我们与Büchi和Co-Büchi目标一起研究有限图上的两人同时随机游戏。第一个玩家的目标是最大化满足给定目标的可能性。继Martin对Blackwell Games的决定性定理之后,我们知道此类游戏具有价值。那么自然问题是:是否存在最佳策略,即实现游戏价值的策略?最佳播放(几乎)所需的记忆是什么?这种情况很容易描述基于回合的游戏,在这种游戏中,位置纯策略足以在具有奇偶校验目标的游戏中发挥最佳作用。并发使情况复杂且异质。对于大多数ω规范目标,总体上确实不存在最佳策略。对于某些目标(我们将提及),最佳或几乎是最佳的演奏也可能需要无限的内存。我们还提供了玩家的当地互动的特征,以确保Büchi和Co-Büchi目标的(几乎)最佳策略的位置。这种表征依赖于游戏形式的属性,即形式主义定义了两个玩家的本地互动。这些举止良好的游戏形式就像基本砖头一样,当它们孤立地行为良好时,可以在图形游戏中组装并确保整个游戏的好属性。

We study two-player concurrent stochastic games on finite graphs, with Büchi and co-Büchi objectives. The goal of the first player is to maximize the probability of satisfying the given objective. Following Martin's determinacy theorem for Blackwell games, we know that such games have a value. Natural questions are then: does there exist an optimal strategy, that is, a strategy achieving the value of the game? what is the memory required for playing (almost-)optimally? The situation is rather simple to describe for turn-based games, where positional pure strategies suffice to play optimally in games with parity objectives. Concurrency makes the situation intricate and heterogeneous. For most ω-regular objectives, there do indeed not exist optimal strategies in general. For some objectives (that we will mention), infinite memory might also be required for playing optimally or almost-optimally. We also provide characterizations of local interactions of the players to ensure positionality of (almost-)optimal strategies for Büchi and co-Büchi objectives. This characterization relies on properties of game forms underpinning the formalism for defining local interactions of the two players. These well-behaved game forms are like elementary bricks which, when they behave well in isolation, can be assembled in graph games and ensure the good property for the whole game.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源