论文标题
理想的四波混合动力学在非线性schr {Ö} dinger方程纤维系统中
Ideal Four Wave Mixing Dynamics in a Nonlinear Schr{ö}dinger Equation Fibre System
论文作者
论文摘要
在非线性Schr {Ö} dinger方程系统中,使用与光纤中的迭代顺序初始条件相关的新实验技术观察到了近乎理想的四波混合动力学。这种新颖的方法可缓解不需要的边带的产生和光损失,从而将有效的繁殖距离延长了两个数量级,从而使Kerr驱动的耦合动力学仅在50 km的光纤上仅使用一个短纤维段可见。我们的实验揭示了振幅和相位的完整动力学空间拓扑,显示了多个费米 - 帕斯塔 - 乌拉姆复发周期,固定波的存在和系统分离质边界的特征。证明实验与描述波化的规范微分方程系统的数值解决方案具有极好的定量一致性。
Near-ideal four wave mixing dynamics are observed in a nonlinear Schr{ö}dinger equation system using a new experimental technique associated with iterated sequential initial conditions in optical fiber. This novel approach mitigates against unwanted sideband generation and optical loss, extending the effective propagation distance by two orders of magnitude, allowing Kerr-driven coupling dynamics to be seen over 50 km of optical fiber using only one short fiber segment of 500 m. Our experiments reveal the full dynamical phase space topology in amplitude and phase, showing characteristic features of multiple Fermi-Pasta-Ulam recurrence cycles, stationary wave existence, and the system separatrix boundary. Experiments are shown to be in excellent quantitative agreement with numerical solutions of the canonical differential equation system describing the wave evolution.