论文标题

DKMA-ULD:领域知识增强基于多头注意的鲁棒通用病变检测

DKMA-ULD: Domain Knowledge augmented Multi-head Attention based Robust Universal Lesion Detection

论文作者

Sheoran, Manu, Dani, Meghal, Sharma, Monika, Vig, Lovekesh

论文摘要

明确地将特定于数据的领域知识纳入深网络可以提供重要的线索对病变检测有益,并可以减轻对学习鲁棒检测器的各种异质数据集的需求。在本文中,我们利用计算机断层扫描(CT)扫描中存在的域信息,并提出了一个可靠的通用病变检测(ULD)网络,该网络可以通过在单个数据集中训练深层进行训练,从而检测人体所有器官的病变。我们分析了使用启发式的Hounsfield单元(HU)窗口生成的不同强度的CT切片,该窗口单独突出了不同的器官,并作为深网的输入给出。使用新型的卷积增强多头自发项模块融合从多强度图像获得的特征,然后将其传递给区域建议网络(RPN)进行病变检测。此外,我们观察到,RPN中用于自然图像的传统锚盒不适用于医疗图像中经常发现的病变尺寸。因此,我们建议在RPN中使用特定病变的锚固尺寸和比率来改善检测性能。我们使用自学意义重点来初始化网络的权重,以进一步吸收域知识。我们提出的域知识增强了基于多头注意的通用病变检测网络DMKA-uld产生精致且精确的边界框,围绕不同器官的病变。我们评估网络对公开可用的深度数据集的功效,该数据集包括大约32K CT扫描,并在体内所有器官中带有带注释的病变。结果表明,我们胜过现有的最新方法,达到总体敏感性为87.16%。

Incorporating data-specific domain knowledge in deep networks explicitly can provide important cues beneficial for lesion detection and can mitigate the need for diverse heterogeneous datasets for learning robust detectors. In this paper, we exploit the domain information present in computed tomography (CT) scans and propose a robust universal lesion detection (ULD) network that can detect lesions across all organs of the body by training on a single dataset, DeepLesion. We analyze CT-slices of varying intensities, generated using heuristically determined Hounsfield Unit(HU) windows that individually highlight different organs and are given as inputs to the deep network. The features obtained from the multiple intensity images are fused using a novel convolution augmented multi-head self-attention module and subsequently, passed to a Region Proposal Network (RPN) for lesion detection. In addition, we observed that traditional anchor boxes used in RPN for natural images are not suitable for lesion sizes often found in medical images. Therefore, we propose to use lesion-specific anchor sizes and ratios in the RPN for improving the detection performance. We use self-supervision to initialize weights of our network on the DeepLesion dataset to further imbibe domain knowledge. Our proposed Domain Knowledge augmented Multi-head Attention based Universal Lesion Detection Network DMKA-ULD produces refined and precise bounding boxes around lesions across different organs. We evaluate the efficacy of our network on the publicly available DeepLesion dataset which comprises of approximately 32K CT scans with annotated lesions across all organs of the body. Results demonstrate that we outperform existing state-of-the-art methods achieving an overall sensitivity of 87.16%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源