论文标题
溶剂铸造膨胀石材/聚醚酰亚胺复合材料的热导率的大量增强
Large enhancement in thermal conductivity of solvent cast expanded-graphite/polyetherimide composites
论文作者
论文摘要
我们在这项工作中证明,扩展的石墨(例如)可以导致通过溶剂铸造技术制备的聚醚酰亚胺 - 透明烯和上氧基 - 透明烯纳米复合材料的热导率非常大。对于10个重量%组成样品,可实现6.56 WM-1K-1的K值,这比原始聚醚酰亚胺(K〜0.23 WM-1K-1)的增强〜2770%。这种非凡的热导率的非凡增强归因于长度尺度上连续的石墨烯片网络引起的,导致在弯曲/转弯处的热接触性低,这是由于石墨烯片在此类交界处共价粘合而导致的。溶剂铸造具有保存在复合材料中膨胀石墨的多孔结构的优势,从而导致上述高度导电的石墨烯和聚合物网络。由于涉及的最小力,溶剂铸造也不会分解扩展的石墨颗粒,从而可以在长度尺度上有效地传热,从而进一步增强整体复合热导率。与最近引入的有效培养基模型的比较显示了预测的颗粒粒子界面电导的很高值,为扩展的石墨复合材料中有效的界面热传输提供了证据。现场发射环境扫描电子显微镜(FE-ESEM)用于在扩展的石墨复合材料中详细了解互穿石墨烯 - 聚合物结构。这些结果为实现高热电导率聚合物复合材料开辟了新的途径。
We demonstrate in this work, that expanded graphite (EG) can lead to a very large enhancement in thermal conductivity of polyetherimide-graphene and epoxy-graphene nanocomposites prepared via solvent casting technique. A k value of 6.56 Wm-1K-1 is achieved for 10 weight % composition sample, representing an enhancement of ~2770% over pristine polyetherimide (k ~ 0.23 Wm-1K-1). This extraordinary enhancement in thermal conductivity is shown to be due to a network of continuous graphene sheets over long length scales, resulting in low thermal contact resistance at bends/turns due to the graphene sheets being covalently bonded at such junctions. Solvent casting offers the advantage of preserving the porous structure of expanded graphite in the composite, resulting in the above highly thermally conductive interpenetrating network of graphene and polymer. Solvent casting also does not break down the expanded graphite particles, due to minimal forces involved, allowing for efficient heat transfer over long length scales, further enhancing overall composite thermal conductivity. Comparisons with a recently introduced effective medium model shows a very high value of predicted particle-particle interfacial conductance, providing evidence for efficient interfacial thermal transport in expanded graphite composites. Field Emission Environmental Scanning Electron Microscopy (FE-ESEM) is used to provide detailed understanding of interpenetrating graphene-polymer structure in the expanded graphite composite. These results open up novel avenues for achieving high thermal conductivity polymer composites.