论文标题
HDPVIEW:探索高维关系数据的差异化私有视图
HDPView: Differentially Private Materialized View for Exploring High Dimensional Relational Data
论文作者
论文摘要
在保留隐私时,我们如何探索高维敏感关系数据的未知属性?我们研究了如何在差异隐私下构建可探索的隐私性实体观点。没有现有的最新方法同时满足数据探索中的以下基本属性:工作负载独立性,分析可靠性(即提供每个搜索查询的错误限制),适用于高维数据和空间效率。为了解决上述问题,我们提出了HDPView,该问题通过在原始数据立方体(即计数张量)上通过精心设计的递归分分分区来创建差异化私有的视图。我们的方法搜索块分区,以最大程度地减少计数查询的误差(除了随机化收敛)外,以差异性私有方式选择有效的切割点,从而降低了嘈杂和紧凑的视图。此外,我们通过为实体观点提供任意计数查询的错误来确保正式的隐私保证和分析可靠性。 HDPView具有以下理想的属性:(a)工作负载独立性,(b)分析可靠性,(c)高维数据上的噪声阻力,(d)空间效率。为了证明上述属性和数据探索的适用性,我们在八个真实数据集上使用八种类型的范围计数查询进行了广泛的实验。 HDPView优于这些评估中最新方法。
How can we explore the unknown properties of high-dimensional sensitive relational data while preserving privacy? We study how to construct an explorable privacy-preserving materialized view under differential privacy. No existing state-of-the-art methods simultaneously satisfy the following essential properties in data exploration: workload independence, analytical reliability (i.e., providing error bound for each search query), applicability to high-dimensional data, and space efficiency. To solve the above issues, we propose HDPView, which creates a differentially private materialized view by well-designed recursive bisected partitioning on an original data cube, i.e., count tensor. Our method searches for block partitioning to minimize the error for the counting query, in addition to randomizing the convergence, by choosing the effective cutting points in a differentially private way, resulting in a less noisy and compact view. Furthermore, we ensure formal privacy guarantee and analytical reliability by providing the error bound for arbitrary counting queries on the materialized views. HDPView has the following desirable properties: (a) Workload independence, (b) Analytical reliability, (c) Noise resistance on high-dimensional data, (d) Space efficiency. To demonstrate the above properties and the suitability for data exploration, we conduct extensive experiments with eight types of range counting queries on eight real datasets. HDPView outperforms the state-of-the-art methods in these evaluations.