论文标题
具有界密度光谱的欧几里得空间上的傅立叶准晶体和分布
Fourier quasicrystals and distributions on Euclidean spaces with spectrum of bounded density
论文作者
论文摘要
我们考虑具有均匀离散支持和局部有限频谱的欧几里得空间上的温带分布。我们发现有关分布系数的条件,它们是广义格子梳子的有限衍生物的有限总和。这些定理来自具有离散支持的措施和几乎周期性分布的家族的性质。
We consider temperate distributions on Euclidean spaces with uniformly discrete support and locally finite spectrum. We find conditions on coefficients of distributions under which they are finite sum of derivatives of generalized lattice Dirac combs. These theorems are derived from properties of families of discretely supported measures and almost periodic distributions.