论文标题
通过内核密度估计来估计光度函数的灵活方法-II。概括和Python实施
A flexible method for estimating luminosity functions via Kernel Density Estimation -- II. Generalization and Python implementation
论文作者
论文摘要
我们提出了以前的KDE(内核密度估计)方法来估计光度函数(LFS)的概括。这项新的升级进一步扩展了我们KDE方法的应用范围,使其成为一种非常灵活的方法,适合处理大多数双变量LF计算问题。从数学角度来看,通常可以将LF计算作为$ \ {z_1 <z <z_2,〜l> f _ {\ mathrm {lim}}}(z)(z)(z)$的有限域中的密度估计问题。我们使用转换反射KDE方法($ \ hat ϕ $)来解决问题,并基于一维kde引入近似方法($ \ hat ϕ _ {\ mathrm {1}} $)来处理小样本尺寸的情况。在实际应用中,可以根据Kolmogorov-Smirnov测试标准灵活选择LF估计器的不同版本。基于200个模拟样本,我们发现,对于两种划分或不划分红移箱的情况,尤其是对于后者,我们的方法的性能明显优于传统的binning方法$ \ hat ϕ _ {\ mathrm {bin}} $。此外,随着样本量$ n $的增加,我们的LF估计器收敛到TRUE LF的速度要快,速度_ {\ Mathrm {bin}} $要快。为了实现我们的方法,我们开发了一个公共开源Python工具包,称为\ texttt {kdelf}。在\ texttt {kdelf}的支持下,由于其高精度和出色的稳定性,我们的KDE方法有望成为现有非参数估计器的竞争替代品。 \ texttt {kdelf}可在\ url {http://github.com/yuanzunli/kdelf}上获得,并提供大量文档,请访问\ url {http://kdelf.readthed.readthedocs.orgss.org/en/latest~}。
We propose a generalization of our previous KDE (kernel density estimation) method for estimating luminosity functions (LFs). This new upgrade further extend the application scope of our KDE method, making it a very flexible approach which is suitable to deal with most of bivariate LF calculation problems. From the mathematical point of view, usually the LF calculation can be abstracted as a density estimation problem in the bounded domain of $\{Z_1<z<Z_2,~ L>f_{\mathrm{lim}}(z) \}$. We use the transformation-reflection KDE method ($\hatϕ$) to solve the problem, and introduce an approximate method ($\hatϕ_{\mathrm{1}}$) based on one-dimensional KDE to deal with the small sample size case. In practical applications, the different versions of LF estimators can be flexibly chosen according to the Kolmogorov-Smirnov test criterion. Based on 200 simulated samples, we find that for both cases of dividing or not dividing redshift bins, especially for the latter, our method performs significantly better than the traditional binning method $\hatϕ_{\mathrm{bin}}$. Moreover, with the increase of sample size $n$, our LF estimator converges to the true LF remarkably faster than $\hatϕ_{\mathrm{bin}}$. To implement our method, we have developed a public, open-source Python Toolkit, called \texttt{kdeLF}. With the support of \texttt{kdeLF}, our KDE method is expected to be a competitive alternative to existing nonparametric estimators, due to its high accuracy and excellent stability. \texttt{kdeLF} is available at \url{http://github.com/yuanzunli/kdeLF} with extensive documentation available at \url{http://kdelf.readthedocs.org/en/latest~}.