论文标题

加入产品和局部抗原色的常规图

On join product and local antimagic chromatic number of regular graphs

论文作者

Lau, Gee-Choon, Shiu, Wai-Chee

论文摘要

令$ g =(v,e)$为连接的简单订单$ p $和size $ q $的图形。如果$ g $承认当地的抗魔法标签,则图$ g $称为本地抗原。 biftion $ f:e \ to \ {1,2,\ ldots,q \} $称为$ g $的本地抗害怕标签,如果对任何两个相邻的顶点$ u $和$ v $,我们都有$ f^+(u)\ ne f^+(u)\ ne f^+(v) $ e(u)$是事件的一组$ u $。因此,如果为顶点$ v $分配了颜色$ f^+(v)$,则任何本地抗原标签都会引起$ g $的适当顶点着色。本地的抗原色编号,表示为$χ_{la}(g)$,是$ g $的本地抗原标签所取的最小诱导颜色数量。令$ g $和$ h $为两个顶点脱节图。 $ g $和$ h $(表示为$ g \ vee h $)的联接图是图$ v(g \ vee h)= v(g)\ cup v(h)$和$ e(g \ vee h)= e(g \ vee h)= e(g)\ cup e(h)在本文中,我们显示了具有任意较大级别,规律性和局部抗原色数的不完整常规图的存在。

Let $G = (V,E)$ be a connected simple graph of order $p$ and size $q$. A graph $G$ is called local antimagic if $G$ admits a local antimagic labeling. A bijection $f : E \to \{1,2,\ldots,q\}$ is called a local antimagic labeling of $G$ if for any two adjacent vertices $u$ and $v$, we have $f^+(u) \ne f^+(v)$, where $f^+(u) = \sum_{e\in E(u)} f(e)$, and $E(u)$ is the set of edges incident to $u$. Thus, any local antimagic labeling induces a proper vertex coloring of $G$ if vertex $v$ is assigned the color $f^+(v)$. The local antimagic chromatic number, denoted $χ_{la}(G)$, is the minimum number of induced colors taken over local antimagic labeling of $G$. Let $G$ and $H$ be two vertex disjoint graphs. The join graph of $G$ and $H$, denoted $G \vee H$, is the graph $V(G\vee H) = V(G) \cup V(H)$ and $E(G\vee H) = E(G) \cup E(H) \cup \{uv \,|\, u\in V(G), v \in V(H)\}$. In this paper, we show the existence of non-complete regular graphs with arbitrarily large order, regularity and local antimagic chromatic numbers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源