论文标题
AutoGpart:中间监督搜索可概括的3D零件细分
AutoGPart: Intermediate Supervision Search for Generalizable 3D Part Segmentation
论文作者
论文摘要
培训可推广的3D部分细分网络非常具有挑战性,但在现实世界中非常重要。为了解决这个问题,一些工作设计特定于任务的解决方案是通过将人类对任务的理解转化为机器学习过程的,这面临缺少最佳策略的风险,因为机器不一定以确切的人类方式理解。其他人则尝试使用为领域泛化问题设计的常规任务不足的方法,而无需考虑任何任务知识。为了解决上述问题,我们提出了AutoGpart,这是一种通用的方法,可以提前考虑培训可通用的3D零件分割网络。 AutoGpart通过编码几何知识知识来构建监督空间,并允许机器自动从空间中搜索最佳的监督。对三个可推广的3D部分分割任务进行了广泛的实验,以证明自动摄影的有效性和多功能性。我们证明,使用我们的方法搜索的监督训练时,使用简单骨架的分割网络的性能可以显着改善。
Training a generalizable 3D part segmentation network is quite challenging but of great importance in real-world applications. To tackle this problem, some works design task-specific solutions by translating human understanding of the task to machine's learning process, which faces the risk of missing the optimal strategy since machines do not necessarily understand in the exact human way. Others try to use conventional task-agnostic approaches designed for domain generalization problems with no task prior knowledge considered. To solve the above issues, we propose AutoGPart, a generic method enabling training generalizable 3D part segmentation networks with the task prior considered. AutoGPart builds a supervision space with geometric prior knowledge encoded, and lets the machine to search for the optimal supervisions from the space for a specific segmentation task automatically. Extensive experiments on three generalizable 3D part segmentation tasks are conducted to demonstrate the effectiveness and versatility of AutoGPart. We demonstrate that the performance of segmentation networks using simple backbones can be significantly improved when trained with supervisions searched by our method.