论文标题
粒子机器人导航和物体操纵的深度加固学习环境
A Deep Reinforcement Learning Environment for Particle Robot Navigation and Object Manipulation
论文作者
论文摘要
粒子机器人是新颖的生物学启发机器人系统,可以集体,健壮,但不能独立地实现运动。尽管目前的控制仅限于用于基本运动任务的手工制作的政策,但这种多机器人系统可以通过深入加固学习(DRL)来更有效地通过深入的强化学习(DRL)来控制。但是,粒子机器人系统为DRL提出了一系列与现有群体机器人系统不同的挑战:每个机器人的低自由度以及机器人之间协调的必要性增加。我们使用OpenAI Gym界面和Pymunk作为物理引擎提出了一个2D粒子机器人模拟器,并引入了新的任务和挑战,以研究DRL在粒子机器人系统中的不受欢迎的应用程序。此外,我们使用稳定的baselines3为任务提供一组基准。当前的基线DRL算法显示了完成任务的迹象,但仍无法达到手工制作的政策的表现。为了完成建议的任务,必须进一步开发DRL算法。
Particle robots are novel biologically-inspired robotic systems where locomotion can be achieved collectively and robustly, but not independently. While its control is currently limited to a hand-crafted policy for basic locomotion tasks, such a multi-robot system could be potentially controlled via Deep Reinforcement Learning (DRL) for different tasks more efficiently. However, the particle robot system presents a new set of challenges for DRL differing from existing swarm robotics systems: the low degrees of freedom of each robot and the increased necessity of coordination between robots. We present a 2D particle robot simulator using the OpenAI Gym interface and Pymunk as the physics engine, and introduce new tasks and challenges to research the underexplored applications of DRL in the particle robot system. Moreover, we use Stable-baselines3 to provide a set of benchmarks for the tasks. Current baseline DRL algorithms show signs of achieving the tasks but are yet unable to reach the performance of the hand-crafted policy. Further development of DRL algorithms is necessary in order to accomplish the proposed tasks.