论文标题

SSCU-NET:高光谱图像的空间 - 光谱协作网络

SSCU-Net: Spatial-Spectral Collaborative Unmixing Network for Hyperspectral Images

论文作者

Qi, Lin, Gao, Feng, Dong, Junyu, Gao, Xinbo, Du, Qian

论文摘要

线性光谱不混合是高光谱图像处理和解释中的必不可少的技术。近年来,基于深度学习的方法在高光谱脉冲中表现出了巨大的希望,尤其是基于自动编码器网络的无监督不混合方法是最近的趋势。自动编码器模型会自动学习低维表示(丰度),并重建了及其相应基础(Endmembers)的数据,在高光谱Unmixing方面取得了出色的性能。在本文中,我们探讨了基于自动编码器网络中空间和光谱信息的有效利用。讨论了有关在自动编码器框架中使用空间和光谱信息的重要发现。受这些发现的启发,我们提出了一个名为SSCU-NET的空间传播协作网络,该网络以端到端方式学习了空间自动编码器网络和光谱自动编码器网络,以更有效地改善Unmixing绩效。 SSCU-NET是一个两流深网,并共享交替的体系结构,在该体系结构中,两个自动编码器网络以协作方式有效地培训,以估算Endmembers和Berfundances。同时,我们通过基于丰富信息引入超像素分割方法来提出一个新的空间自动编码网络,该方法极大地促进了空间信息的利用并提高了Unmixing网络的准确性。此外,进行了广泛的消融研究,以研究SSCU-NET的性能提高。与几种最先进的高光谱混合方法相比,对合成和真实高光谱数据集的实验结果都说明了所提出的SSCU-NET的有效性和竞争力。

Linear spectral unmixing is an essential technique in hyperspectral image processing and interpretation. In recent years, deep learning-based approaches have shown great promise in hyperspectral unmixing, in particular, unsupervised unmixing methods based on autoencoder networks are a recent trend. The autoencoder model, which automatically learns low-dimensional representations (abundances) and reconstructs data with their corresponding bases (endmembers), has achieved superior performance in hyperspectral unmixing. In this article, we explore the effective utilization of spatial and spectral information in autoencoder-based unmixing networks. Important findings on the use of spatial and spectral information in the autoencoder framework are discussed. Inspired by these findings, we propose a spatial-spectral collaborative unmixing network, called SSCU-Net, which learns a spatial autoencoder network and a spectral autoencoder network in an end-to-end manner to more effectively improve the unmixing performance. SSCU-Net is a two-stream deep network and shares an alternating architecture, where the two autoencoder networks are efficiently trained in a collaborative way for estimation of endmembers and abundances. Meanwhile, we propose a new spatial autoencoder network by introducing a superpixel segmentation method based on abundance information, which greatly facilitates the employment of spatial information and improves the accuracy of unmixing network. Moreover, extensive ablation studies are carried out to investigate the performance gain of SSCU-Net. Experimental results on both synthetic and real hyperspectral data sets illustrate the effectiveness and competitiveness of the proposed SSCU-Net compared with several state-of-the-art hyperspectral unmixing methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源